Home
Class 12
MATHS
Period of f(x) = sin 3x cos[3x]-cos 3x s...

Period of `f(x) = sin 3x cos[3x]-cos 3x sin [3x]` (where[] denotes the greatest integer function), is

A

`1//6`

B

`2//3`

C

`5//6`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin(3x) \cos[\mod(3x)] - \cos(3x) \sin[\mod(3x)] \), we can follow these steps: ### Step 1: Rewrite the Function We can use the sine subtraction formula: \[ \sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b) \] In our case, let \( a = 3x \) and \( b = \mod(3x) \). Thus, we can rewrite the function as: \[ f(x) = \sin(3x - \mod(3x)) \] ### Step 2: Understand the Greatest Integer Function The term \(\mod(3x)\) represents the greatest integer less than or equal to \(3x\). Therefore, we can express \(3x\) as: \[ 3x = n + \{3x\} \] where \(n = \lfloor 3x \rfloor\) (the greatest integer less than or equal to \(3x\)) and \(\{3x\}\) is the fractional part of \(3x\). ### Step 3: Simplify the Argument of the Sine Function Thus, we can rewrite the argument of the sine function: \[ 3x - \mod(3x) = 3x - n = \{3x\} \] So we have: \[ f(x) = \sin(\{3x\}) \] ### Step 4: Determine the Period of \(\{3x\}\) The function \(\{3x\}\) has a period of \(\frac{1}{3}\) because it resets every time \(3x\) increases by 1 (i.e., when \(x\) increases by \(\frac{1}{3}\)). ### Step 5: Conclusion Thus, the period of \(f(x) = \sin(3x - \mod(3x))\) is: \[ \text{Period} = \frac{1}{3} \] ### Final Answer The period of the function \( f(x) = \sin(3x) \cos[\mod(3x)] - \cos(3x) \sin[\mod(3x)] \) is \(\frac{1}{3}\). ---

To find the period of the function \( f(x) = \sin(3x) \cos[\mod(3x)] - \cos(3x) \sin[\mod(3x)] \), we can follow these steps: ### Step 1: Rewrite the Function We can use the sine subtraction formula: \[ \sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b) \] In our case, let \( a = 3x \) and \( b = \mod(3x) \). Thus, we can rewrite the function as: ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

Period of the function f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]} is (where [.] denotes the greatest integer function )

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then