Home
Class 12
MATHS
Period of f(x) = sgn([x] +[-x])is equal ...

Period of `f(x) = sgn([x] +[-x])`is equal to (where [.] denotes greatest integer function

A

1

B

2

C

3

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \text{sgn}([x] + [-x]) \), where \([.]\) denotes the greatest integer function, we will analyze the function step by step. ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) returns the largest integer less than or equal to \(x\). For example: - \([4.3] = 4\) - \([-4.3] = -5\) ### Step 2: Analyzing the Function We can rewrite the function \( f(x) \): \[ f(x) = \text{sgn}([x] + [-x]) \] Here, \([-x]\) is the greatest integer less than or equal to \(-x\). ### Step 3: Evaluating the Function for Non-Integer Values Let’s evaluate \(f(x)\) for a non-integer value, say \(x = 4.3\): - \([4.3] = 4\) - \([-4.3] = -5\) So, \[ [x] + [-x] = 4 + (-5) = -1 \] Thus, \[ f(4.3) = \text{sgn}(-1) = -1 \] ### Step 4: Evaluating the Function for Integer Values Now, let’s evaluate \(f(x)\) for an integer value, say \(x = 3\): - \([3] = 3\) - \([-3] = -3\) So, \[ [x] + [-x] = 3 + (-3) = 0 \] Thus, \[ f(3) = \text{sgn}(0) = 0 \] ### Step 5: Generalizing the Function From the above evaluations, we can see: - For integer values \(x\), \(f(x) = 0\). - For non-integer values \(x\), \(f(x) = -1\). ### Step 6: Graphing the Function The graph of \(f(x)\) will show: - A value of \(0\) at every integer point. - A value of \(-1\) for all other real numbers. ### Step 7: Determining the Period Since the function \(f(x)\) takes the value of \(-1\) for all non-integer values and \(0\) at integer values, it repeats its behavior every unit interval. Therefore, the period of the function is: \[ \text{Period} = 1 \] ### Final Answer The period of \(f(x) = \text{sgn}([x] + [-x])\) is equal to \(1\). ---

To find the period of the function \( f(x) = \text{sgn}([x] + [-x]) \), where \([.]\) denotes the greatest integer function, we will analyze the function step by step. ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) returns the largest integer less than or equal to \(x\). For example: - \([4.3] = 4\) - \([-4.3] = -5\) ### Step 2: Analyzing the Function ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

The value of int_-1^10 sgn (x -[x])dx is equal to (where, [:] denotes the greatest integer function

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)