Home
Class 12
MATHS
If F(x) and G(x) are even and odd extens...

If `F(x) and G(x)` are even and odd extensions of the functions `f(x) = x|x|+ sin|x|+ xe^x`, where `x in (0, 1), g(x) = cos|x| + x^2-x`, is where `x in (0, 1)` respectively to the ars interval `(-1, 0)` then `F(x)+G(x) `in `(-1,0)` is

A

`sinx +cosx +xe^(-x)`

B

`-(sin x +cos x +xe^(-x))`

C

`-(sin x +cos x +x + xe^(-x))`

D

`-(sin x +cos x +x^(2)+xe^(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( F(x) + G(x) \) for \( x \in (-1, 0) \), where \( F(x) \) is the even extension of \( f(x) \) and \( G(x) \) is the odd extension of \( g(x) \). ### Step-by-Step Solution: 1. **Identify the functions**: - Given \( f(x) = x|x| + \sin|x| + xe^x \) for \( x \in (0, 1) \). - Given \( g(x) = \cos|x| + x^2 - x \) for \( x \in (0, 1) \). 2. **Find the even extension \( F(x) \)**: - The even extension of a function \( f(x) \) is defined as: \[ F(x) = \begin{cases} f(x) & \text{if } x \geq 0 \\ f(-x) & \text{if } x < 0 \end{cases} \] - For \( x < 0 \): \[ F(x) = f(-x) = (-x)|-x| + \sin|-x| + (-x)e^{-x} \] Since \( |-x| = -x \) for \( x < 0 \): \[ F(x) = -x^2 + \sin(-x) - xe^{-x} = -x^2 - \sin x - xe^{-x} \] 3. **Find the odd extension \( G(x) \)**: - The odd extension of a function \( g(x) \) is defined as: \[ G(x) = \begin{cases} g(x) & \text{if } x \geq 0 \\ -g(-x) & \text{if } x < 0 \end{cases} \] - For \( x < 0 \): \[ G(x) = -g(-x) = -\left(\cos|-x| + (-x)^2 - (-x)\right) \] Since \( |-x| = -x \): \[ G(x) = -\left(\cos x + x^2 + x\right) = -\cos x - x^2 - x \] 4. **Combine \( F(x) \) and \( G(x) \)**: - Now we can find \( F(x) + G(x) \): \[ F(x) + G(x) = (-x^2 - \sin x - xe^{-x}) + (-\cos x - x^2 - x) \] - Combine like terms: \[ F(x) + G(x) = -2x^2 - \sin x - \cos x - x - xe^{-x} \] 5. **Final Expression**: - Therefore, the expression for \( F(x) + G(x) \) in the interval \( (-1, 0) \) is: \[ F(x) + G(x) = -2x^2 - \sin x - \cos x - x - xe^{-x} \]

To solve the problem, we need to find \( F(x) + G(x) \) for \( x \in (-1, 0) \), where \( F(x) \) is the even extension of \( f(x) \) and \( G(x) \) is the odd extension of \( g(x) \). ### Step-by-Step Solution: 1. **Identify the functions**: - Given \( f(x) = x|x| + \sin|x| + xe^x \) for \( x \in (0, 1) \). - Given \( g(x) = \cos|x| + x^2 - x \) for \( x \in (0, 1) \). ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

Let f(x)=cot^-1g(x)] where g(x) is an increasing function on the interval (0,pi) Then f(x) is

Let g(x)=f(x)+f(1-x) and f''(x)<0 , when x in (0,1) . Then f(x) is

The no. of solutions of the equation a^(f(x)) + g(x)=0 where a>0 , and g(x) has minimum value of 1/2 is :-

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+(g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

If f"(x) > 0 and f(1) = 0 such that g(x) = f(cot^2x + 2cotx + 2) where 0 < x < pi , then g'(x) decreasing in (a, b). where a + b + pi/4 …

Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

f(x) and g(x) are two differentiable functions in [0,2] such that f"(x)=g"(x)=0, f'(1)=2, g'(1)=4, f(2)=3, g(2)=9 then f(x)-g(x) at x=3/2 is