Home
Class 12
MATHS
Let f(x)=(ax + b )/(cx+d). Then the fof ...

Let `f(x)=(ax + b )/(cx+d)`. Then the `fof (x)=x`, provided that : `(a!=0, b!= 0, c!=0,d!=0)`

A

`d=-a`

B

`d=a`

C

`a=b=1`

D

`a=b=c=d=1,`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the conditions under which \( f(f(x)) = x \) for the function \( f(x) = \frac{ax + b}{cx + d} \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{ax + b}{cx + d} \] 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{ax + b}{cx + d}\right) = \frac{a\left(\frac{ax + b}{cx + d}\right) + b}{c\left(\frac{ax + b}{cx + d}\right) + d} \] 3. **Simplify the numerator**: The numerator becomes: \[ a\left(\frac{ax + b}{cx + d}\right) + b = \frac{a(ax + b) + b(cx + d)}{cx + d} = \frac{a^2x + ab + bcx + bd}{cx + d} \] Thus, the numerator simplifies to: \[ (a^2 + bc)x + (ab + bd) \] 4. **Simplify the denominator**: The denominator becomes: \[ c\left(\frac{ax + b}{cx + d}\right) + d = \frac{c(ax + b) + d(cx + d)}{cx + d} = \frac{cax + cb + dcx + d^2}{cx + d} \] Thus, the denominator simplifies to: \[ (ca + dc)x + (cb + d^2) \] 5. **Combine the results**: Therefore, we have: \[ f(f(x)) = \frac{(a^2 + bc)x + (ab + bd)}{(ca + dc)x + (cb + d^2)} \] 6. **Set \( f(f(x)) = x \)**: For \( f(f(x)) \) to equal \( x \), we need: \[ \frac{(a^2 + bc)x + (ab + bd)}{(ca + dc)x + (cb + d^2)} = x \] 7. **Cross-multiply**: This gives us: \[ (a^2 + bc)x + (ab + bd) = x((ca + dc)x + (cb + d^2)) \] Expanding the right side: \[ (a^2 + bc)x + (ab + bd) = (ca + dc)x^2 + (cb + d^2)x \] 8. **Rearranging terms**: Rearranging gives us: \[ 0 = (ca + dc)x^2 + (cb + d^2 - (a^2 + bc))x - (ab + bd) \] 9. **Setting coefficients to zero**: For this quadratic equation to hold for all \( x \), the coefficients must be zero: - Coefficient of \( x^2 \): \( ca + dc = 0 \) - Coefficient of \( x \): \( cb + d^2 - (a^2 + bc) = 0 \) - Constant term: \( ab + bd = 0 \) 10. **Solving the equations**: From \( ca + dc = 0 \), we can express \( d = -\frac{ca}{c} = -a \). Substitute \( d = -a \) into the other equations: - From \( ab + bd = 0 \): \[ ab - ab = 0 \quad \text{(always true)} \] - From \( cb + d^2 - (a^2 + bc) = 0 \): \[ cb + a^2 - (a^2 + bc) = 0 \implies cb - bc = 0 \quad \text{(always true)} \] Thus, the condition we derived is: \[ d = -a \] ### Final Answer: The condition for \( f(f(x)) = x \) is: \[ d = -a \]

To solve the problem, we need to find the conditions under which \( f(f(x)) = x \) for the function \( f(x) = \frac{ax + b}{cx + d} \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{ax + b}{cx + d} \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

Let f(x)={(x-4)/(|x-4|a+b)+a ,x 0 Then, f(x) is continuous at x=4 when (a) a=0,b=0 (b) a=1,b=1 (c) a=-1,b=1 (d) a=1,b=-1

If f(x)=(ax + b)sinx+(cx +d)cos x , then the values of a b, c and d such that f"(x)=xcos x for all x, then (a + b + c + d)is

Let f(x)={(e^x-1+ax)/x^2, x>0 and b, x=0 and sin(x/2)/x , x<0 , then

Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in R. Also given that f (x) =0 has no real roots and 4a + b gt 0. Let p =b-4a, q=2a +b, then pq is:

Let f(x)=a x^2+b x+cdot Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) the minimum value of f(x) as b varies, the range of m(b) is (A) [0,1] (B) (0,1/2] (C) [1/2,1] (D) (0,1]

Let f(x)=a+b|x|+c|x|^4 , where a ,\ b , and c are real constants. Then, f(x) is differentiable at x=0 , if a=0 (b) b=0 (c) c=0 (d) none of these

Let f(x)=a+b|x|+c|x|^4 , where a , ba n dc are real constants. Then, f(x) is differentiable at x=0, if a=0 (b) b=0 (c) c=0 (d) none of these

Let alpha,beta be the roots of the equation (x-a)(x-b)=c ,c!=0 Then the roots of the equation (x-alpha)(x-beta)+c=0 are a ,c (b) b ,c a ,b (d) a+c ,b+c