Home
Class 12
MATHS
If f :R ->R , f(x)=x^3 +3,and g:R->R,g(x...

If `f :R ->R` , `f(x)=x^3 +3`,and `g:R->R`,`g(x)=2x + 1`, then `f^(-1)(g^(-1)(23))` equals

A

2

B

3

C

`(14)^(1//3)`

D

`(15)^(1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f^{-1}(g^{-1}(23)) \) given the functions \( f(x) = x^3 + 3 \) and \( g(x) = 2x + 1 \). ### Step 1: Find \( g^{-1}(23) \) The function \( g(x) = 2x + 1 \). To find the inverse, we set \( y = g(x) \): \[ y = 2x + 1 \] Now, solve for \( x \): \[ y - 1 = 2x \\ x = \frac{y - 1}{2} \] Thus, the inverse function is: \[ g^{-1}(y) = \frac{y - 1}{2} \] Now, substitute \( 23 \) into \( g^{-1} \): \[ g^{-1}(23) = \frac{23 - 1}{2} = \frac{22}{2} = 11 \] ### Step 2: Find \( f^{-1}(11) \) Next, we need to find \( f^{-1}(x) \) for \( f(x) = x^3 + 3 \). Set \( y = f(x) \): \[ y = x^3 + 3 \] Now, solve for \( x \): \[ y - 3 = x^3 \\ x = (y - 3)^{1/3} \] Thus, the inverse function is: \[ f^{-1}(y) = (y - 3)^{1/3} \] Now, substitute \( 11 \) into \( f^{-1} \): \[ f^{-1}(11) = (11 - 3)^{1/3} = 8^{1/3} = 2 \] ### Final Answer Thus, the value of \( f^{-1}(g^{-1}(23)) \) is: \[ \boxed{2} \]

To solve the problem, we need to find \( f^{-1}(g^{-1}(23)) \) given the functions \( f(x) = x^3 + 3 \) and \( g(x) = 2x + 1 \). ### Step 1: Find \( g^{-1}(23) \) The function \( g(x) = 2x + 1 \). To find the inverse, we set \( y = g(x) \): \[ y = 2x + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

If f : R to R , f(x)=x^(2) and g(x)=2x+1 , then

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

Let R be the set of real numbers. If f: R->R :f(x)=x^2 and g: R->R ;g(x)=2x+1. Then, find fog and gof . Also, show that fog!=gofdot

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .

If f:R to R be defined by f(x)=3x^(2)-5 and g: R to R by g(x)= (x)/(x^(2)+1). Then, gof is

If f:R -> R, g:R -> R defined as f(x) = sin x and g(x) = x^2 , then find the value of (gof)(x) and (fog)(x) and also prove that gof != fog .

If f, g : R to R such that f(x) = 3 x^(2) - 2, g (x) = sin (2x) the g of =