Home
Class 12
MATHS
Let agt1 be a real number and f(x)=log(a...

Let `agt1` be a real number and `f(x)=log_(a)x^(2)" for "xgt 0.` If `f^(-1)` is the inverse function fo f and b and c are real numbers then `f^(-1)(b+c)` is equal to

A

`f^(-1)(b).f^(-1)(c)`

B

`f^(-1)(b)+f^(-1)(c)`

C

`(1)/(f(b+c))`

D

`(1)/(f^(-1)(b)+f^(-1)(c))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( f^{-1}(b+c) \) given the function \( f(x) = \log_a(x^2) \) for \( x > 0 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \log_a(x^2) \] 2. **Simplify the function**: Using the logarithmic identity \( \log_a(x^m) = m \cdot \log_a(x) \), we can rewrite: \[ f(x) = 2 \cdot \log_a(x) \] 3. **Set \( y = f(x) \)**: Let \( y = f(x) \). Then we have: \[ y = 2 \cdot \log_a(x) \] 4. **Express \( x \) in terms of \( y \)**: To find the inverse function, we need to express \( x \) in terms of \( y \): \[ \frac{y}{2} = \log_a(x) \] Exponentiating both sides gives: \[ x = a^{y/2} \] 5. **Write the inverse function**: Thus, the inverse function \( f^{-1}(y) \) is: \[ f^{-1}(y) = a^{y/2} \] 6. **Find \( f^{-1}(b+c) \)**: Now, we need to find \( f^{-1}(b+c) \): \[ f^{-1}(b+c) = a^{(b+c)/2} \] 7. **Express \( f^{-1}(b+c) \)**: We can rewrite this as: \[ f^{-1}(b+c) = a^{b/2} \cdot a^{c/2} \] 8. **Relate to \( f^{-1}(b) \) and \( f^{-1}(c) \)**: Recognizing that: \[ f^{-1}(b) = a^{b/2} \quad \text{and} \quad f^{-1}(c) = a^{c/2} \] We can express: \[ f^{-1}(b+c) = f^{-1}(b) \cdot f^{-1}(c) \] ### Final Answer: Thus, we conclude that: \[ f^{-1}(b+c) = f^{-1}(b) \cdot f^{-1}(c) \]

To solve the problem, we need to find the expression for \( f^{-1}(b+c) \) given the function \( f(x) = \log_a(x^2) \) for \( x > 0 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \log_a(x^2) \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|9 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos
  • EQUATION OF PLANE AND ITS APPLICATIONS -II

    CENGAGE ENGLISH|Exercise DPP 3.4|14 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE ENGLISH|Exercise Exercises 1.18|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2) is a real function, find the value of f(1).

Let f(x)=a sin x+c , where a and c are real numbers and a>0. Then f(x)lt0, AA x in R if

If f(x) is an even function then find the number of distinct real numbers x such that f(x)=f((x+1)/(x+2)).

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

If f is a real function, find the domain of f(x)=(1)/(log|x|)

If f is a real function defined by f(x)=(log(2x+1))/(sqrt3-x) , then the domain of the function is

Let f be a function whose domain is the set of all real number. If f(x)=|x|-x , what is the range of f?

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2, xlt1),(bx+a^(2),xge1):} is differentiable of all xepsilonR , then

Let agt1 be a real number . If S is the set of real number x that are solutions to the equation a^(2log_2x)=5+4x^(log_2a) , then