Home
Class 12
MATHS
L=lim(xrarr0) (sin(sinx)-sinx)/(ax^(5)+b...

`L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12)`
The value/values of b is

A

`in` R

B

2

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to find the value of \( b \) in the expression: \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} = -\frac{1}{12} \] ### Step 1: Analyze the limit First, we substitute \( x = 0 \) into the expression. We find that both the numerator and denominator approach 0: - \( \sin(\sin 0) - \sin 0 = 0 - 0 = 0 \) - \( ax^5 + bx^3 + c = 0 + 0 + c = c \) Thus, we have a \( \frac{0}{0} \) form, which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can differentiate the numerator and denominator: - The derivative of the numerator \( \sin(\sin x) - \sin x \): \[ \frac{d}{dx}(\sin(\sin x)) = \cos(\sin x) \cdot \cos x \] \[ \frac{d}{dx}(\sin x) = \cos x \] Thus, the derivative of the numerator is: \[ \cos(\sin x) \cdot \cos x - \cos x = \cos x (\cos(\sin x) - 1) \] - The derivative of the denominator \( ax^5 + bx^3 + c \): \[ \frac{d}{dx}(ax^5 + bx^3 + c) = 5ax^4 + 3bx^2 \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ L = \lim_{x \to 0} \frac{\cos x (\cos(\sin x) - 1)}{5ax^4 + 3bx^2} \] ### Step 4: Evaluate the limit again Substituting \( x = 0 \) again gives us: - The numerator: \( \cos(0)(\cos(0) - 1) = 1(1 - 1) = 0 \) - The denominator: \( 5a(0)^4 + 3b(0)^2 = 0 \) We again have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again Differentiate the numerator and denominator again: - The second derivative of the numerator: \[ \frac{d}{dx}[\cos x (\cos(\sin x) - 1)] = -\sin x (\cos(\sin x) - 1) + \cos x \cdot \sin(\sin x) \cdot \cos x \] - The second derivative of the denominator: \[ \frac{d}{dx}(5ax^4 + 3bx^2) = 20ax^3 + 6bx \] ### Step 6: Rewrite the limit again Now we can rewrite the limit: \[ L = \lim_{x \to 0} \frac{-\sin x (\cos(\sin x) - 1) + \cos^2 x \cdot \sin(\sin x)}{20ax^3 + 6bx} \] ### Step 7: Evaluate the limit again Substituting \( x = 0 \): - The numerator approaches \( 0 \) since \( \sin(0) = 0 \). - The denominator approaches \( 0 \). ### Step 8: Final differentiation We can differentiate one more time if needed, but we can also simplify our approach by recognizing that we can factor out \( x \) from the denominator and numerator. ### Step 9: Set the limit equal to -1/12 From the problem, we know: \[ L = -\frac{1}{12} \] Setting the simplified limit equal to this value gives us an equation to solve for \( b \). ### Step 10: Solve for \( b \) After simplifying, we find: \[ -\frac{1}{6b} = -\frac{1}{12} \] Cross-multiplying gives: \[ 6b = 12 \implies b = 2 \] ### Conclusion Thus, the value of \( b \) is: \[ \boxed{2} \]

To solve the limit problem given, we need to find the value of \( b \) in the expression: \[ L = \lim_{x \to 0} \frac{\sin(\sin x) - \sin x}{ax^5 + bx^3 + c} = -\frac{1}{12} \] ### Step 1: Analyze the limit First, we substitute \( x = 0 \) into the expression. We find that both the numerator and denominator approach 0: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

L=lim_(xrarr0) (sin(sinx)-sinx)/(ax^(5)+bx^(3)+c)=-(1)/(12) The value/values of a is

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(x->0) (sin(sinx)-sinx)/(ax^3+bx^5+c)=-1/12 then

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(xrarr0) (ax+b)/(cx+1)

Evaluate: lim_(xrarr0)(sin5x)/(tan3x) .

lim_(xrarr0) (sinax+bx)/(ax+si nbx),a,b,a+bne0