Home
Class 12
MATHS
If f(x)=lim(nrarroo) ((x^(2)+ax+1)+x^(2n...

If `f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x)` exists, then
The value of a is

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given and find the value of \( a \) such that the limit exists as \( x \) approaches \( \pm 1 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \lim_{n \to \infty} \frac{x^2 + ax + 1 + x^{2n}(2x^2 + x + b)}{1 + x^{2n}} \] 2. **Consider the cases for \( x \)**: - **Case 1**: When \( |x| < 1 \) (i.e., \( -1 < x < 1 \)) - **Case 2**: When \( |x| > 1 \) (i.e., \( x > 1 \) or \( x < -1 \)) 3. **Evaluate \( f(x) \) for \( |x| < 1 \)**: - As \( n \to \infty \), \( x^{2n} \to 0 \) because \( |x| < 1 \). - Therefore, the function simplifies to: \[ f(x) = \frac{x^2 + ax + 1 + 0}{1 + 0} = x^2 + ax + 1 \] 4. **Evaluate \( f(x) \) for \( |x| > 1 \)**: - As \( n \to \infty \), \( x^{2n} \to \infty \) because \( |x| > 1 \). - The function simplifies to: \[ f(x) = \frac{0 + x^{2n}(2x^2 + x + b)}{x^{2n}} = 2x^2 + x + b \] 5. **Set up the limits at \( x = -1 \)**: - From the left (approaching from \( |x| < 1 \)): \[ \lim_{x \to -1^-} f(x) = (-1)^2 + a(-1) + 1 = 1 - a + 1 = 2 - a \] - From the right (approaching from \( |x| > 1 \)): \[ \lim_{x \to -1^+} f(x) = 2(-1)^2 + (-1) + b = 2 - 1 + b = 1 + b \] 6. **Set the limits equal for continuity**: \[ 2 - a = 1 + b \quad \text{(1)} \] 7. **Set up the limits at \( x = 1 \)**: - From the left (approaching from \( |x| < 1 \)): \[ \lim_{x \to 1^-} f(x) = 1^2 + a(1) + 1 = 1 + a + 1 = 2 + a \] - From the right (approaching from \( |x| > 1 \)): \[ \lim_{x \to 1^+} f(x) = 2(1)^2 + (1) + b = 2 + 1 + b = 3 + b \] 8. **Set the limits equal for continuity**: \[ 2 + a = 3 + b \quad \text{(2)} \] 9. **Solve the system of equations**: - From equation (1): \[ b = 2 - a - 1 = 1 - a \] - Substitute \( b \) into equation (2): \[ 2 + a = 3 + (1 - a) \] \[ 2 + a = 4 - a \] \[ 2a = 2 \implies a = 1 \] 10. **Find \( b \)**: - Substitute \( a = 1 \) into \( b = 1 - a \): \[ b = 1 - 1 = 0 \] ### Conclusion: The value of \( a \) is \( \boxed{1} \).

To solve the problem, we need to analyze the function given and find the value of \( a \) such that the limit exists as \( x \) approaches \( \pm 1 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \lim_{n \to \infty} \frac{x^2 + ax + 1 + x^{2n}(2x^2 + x + b)}{1 + x^{2n}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

f(x)=(3x^2+a x+a+1)/(x^2+x-2) and lim_(x->-2)f(x) exists. Then the value of (a-4) is__________

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim_(xto0)f(x)=2 , then the value of lamda is

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then