Home
Class 12
MATHS
If f(x)=lim(nrarroo)((x^(2)+ax+1)+x^(2n)...

If `f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x)` exists, then
The value of b is

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limit of the function \( f(x) \) as \( n \) approaches infinity and determine the conditions under which the limit exists as \( x \) approaches \( \pm 1 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \lim_{n \to \infty} \frac{x^2 + ax + 1 + x^{2n}(2x^2 + x + b)}{1 + x^{2n}} \] 2. **Analyze the limit as \( n \to \infty \)**: - The term \( x^{2n} \) behaves differently depending on the value of \( x \): - If \( |x| < 1 \), then \( x^{2n} \to 0 \). - If \( |x| = 1 \), then \( x^{2n} = 1 \). - If \( |x| > 1 \), then \( x^{2n} \to \infty \). 3. **Evaluate \( f(x) \) for different cases**: - **Case 1**: \( |x| < 1 \) \[ f(x) = \frac{x^2 + ax + 1 + 0}{1 + 0} = x^2 + ax + 1 \] - **Case 2**: \( |x| = 1 \) \[ f(1) = \frac{1 + a + 1 + 2 + b}{1 + 1} = \frac{3 + a + b}{2} \] \[ f(-1) = \frac{1 - a + 1 + 2 + b}{1 + 1} = \frac{3 - a + b}{2} \] - **Case 3**: \( |x| > 1 \) \[ f(x) = \frac{x^{2n}(2x^2 + x + b)}{x^{2n}} = 2x^2 + x + b \] 4. **Set up conditions for limits at \( x = 1 \) and \( x = -1 \)**: - For \( x = 1 \): \[ \lim_{x \to 1^-} f(x) = 1 + a + 1 = 2 + a \] \[ \lim_{x \to 1^+} f(x) = 2 + 1 + b = 3 + b \] Setting these equal gives: \[ 2 + a = 3 + b \quad \text{(1)} \] - For \( x = -1 \): \[ \lim_{x \to -1^-} f(x) = 1 - a + 1 = 2 - a \] \[ \lim_{x \to -1^+} f(x) = 2 + (-1) + b = 1 + b \] Setting these equal gives: \[ 2 - a = 1 + b \quad \text{(2)} \] 5. **Solve the system of equations**: - From equation (1): \[ a - b = 1 \quad \text{(3)} \] - From equation (2): \[ a + b = 1 \quad \text{(4)} \] 6. **Add equations (3) and (4)**: \[ (a - b) + (a + b) = 1 + 1 \implies 2a = 2 \implies a = 1 \] 7. **Substitute \( a = 1 \) into equation (4)**: \[ 1 + b = 1 \implies b = 0 \] ### Final Answer: The value of \( b \) is \( \boxed{0} \).

To solve the problem, we need to analyze the limit of the function \( f(x) \) as \( n \) approaches infinity and determine the conditions under which the limit exists as \( x \) approaches \( \pm 1 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \lim_{n \to \infty} \frac{x^2 + ax + 1 + x^{2n}(2x^2 + x + b)}{1 + x^{2n}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=lim_(nrarroo) ((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1) f(x) exists, then The value of a is

f(x)=(3x^2+a x+a+1)/(x^2+x-2) and lim_(x->-2)f(x) exists. Then the value of (a-4) is__________

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim_(xto0)f(x)=2 , then the value of lamda is

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then f has

Suppose f(x)={(a+bx, x 1):} and if lim_(xto1) f(x)=f(1) , what are the values of a and b?