Home
Class 12
MATHS
Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]...

Given `f(x)={3-[cot^(-1)((2x^3-3)/(x^2))] for x >0 and {x^2}cos(e^(1/x)) for x<0` (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?

A

`f(0^(-))=0`

B

`f(0^(+))=3`

C

If `f(0)=0,` then f(x) is continuous at x = 0

D

Irremovable discontinuity of f at x = 0

Text Solution

Verified by Experts

The correct Answer is:
B, D

`underset(xrarr0^(+))(lim)(3-[cot^(-1)((2x^(3)-3)/(x^(2)))])=3-[cot^(-1)(-oo)]=0`
`underset(xrarr0^(-))(lim){x^(2)}cos(e^(1//x))=0xx"(value between -1 and 1)"`
`=0`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Given f(x)=3x+2 . Find f^(-1)(x)

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

Given f(x) = 1/( (x^2 + 2x+1)^(1/3) + (x^2 -1)^(1/3) + (x^2 - 2x + 1)^(1/3)) and E = f(1) + f(3) + f(5) + ............ + f(999), then

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

Solve for x if (cot^(-1)x)^2-3(cot^(-1)x)+2>0

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))