Home
Class 12
MATHS
Let f(x) be a function defined on (-a ,a...

Let `f(x)` be a function defined on `(-a ,a)` with `a > 0.` Assume that `f(x)` is continuous at `x=0a n d(lim)_(xvec0)(f(x)-f(k x))/x=alpha,w h e r ek in (0,1)` then `f^(prime)(0^+)=0` b. `f^(prime)(0^-)=alpha/(1-k)` c. `f(x)` is differentiable at `x=0` d. `f(x)` is non-differentiable at `x=0`

A

`f'(0^(+))=0`

B

`f'(0^(-))=(alpha)/(1-k)`

C

f(x) is defferentiable at x = 0

D

f(x) is non-differentiable at x = 0

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

`because" "underset(xrarr0)(lim)(f(x)-f(lalpha))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)(f(x)-f(0)+f(0)-(kx))/(x)=alpha`
`rArr" "underset(xrarr0)(lim)((f(x)-f(0))/(x)-(f(lx)-f(0))/(x))=alpha`
`rArr" "(underset(xrarr0)(lim)(f(x)-f(0))/(x))-(underset(xrarr0)(lim)(f(kx)-f(0))/(kx))k=alpha`
`rArr" "{{:(underset(xrarr0^(-))(lim)(f(x)-f(0))/(x)-underset(xrarr0^(-))(lim)(f(kx)-f(0))/(kx)k=alpha),(underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx)-underset(xrarr0^(+))(lim)(f(kx)-f(0))/(kx).k=alpha):}`
`={{:(f'(0^(-))-kf'(0^(-))=alpha),(f'(0^(+))-kf'(0^(+))=alpha):}`
`={{:((1-k)f'(0^(-))=alpha),((1-k)f'(0^(+))=alpha):}`
`={{:(f'(0^(-))=(alpha)/(-k)),(f'(0^(+))=(alpha)/(1-k)):}`
`therefore" "f'(0)=f'(0^(-))=f'(0^(+))=(alpha)/(1-k)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f^(x) be continuous at x=0 If ("lim")_(xvec0)(2f(x)-3a(f(2x)+bf(8x))/(sin^2x) exists and f(0)!=0,f^(prime)(0)!=0, then the value of (3a)/b is____

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f(x)=(sin3x)/x,w h e nx!=0, f(x)= 1,w h e n x=0 Find whether f(x) is continuous at x=0

If f(0)=f(1)=0 , f^(prime)(1)=f^(prime)(0)=2 and y=f(e^x)e^(f(x)) , write the value of (dy)/(dx) at x=0 .

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

if the function f(x) defined by f(x)= (log(1+a x)-"log"(1-b x))/x , if x!=0 and k if x=0 is continuous at x=0 , find k.

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

If f(x) = x^(3) sgn (x), then A. f is differentiable at x = 0 B. f is continuous but not differentiable at x = 0 C. f'(0^(-)) = 1 D. None of these

Let f(x)=(1-cosx)/(x^2),\ \ \ w h e n\ x!=0,\ f(x)=1,\ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .

Let f(x) be a function defined by f(x) = {{:((3x)/(|x|+2x),x ne 0),(0,x = 0):} Show that lim_(x rarr 0) f(x) does not exist.