Home
Class 12
MATHS
If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqr...

If `int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C`, then

A

`f(x)=x-1`

B

`g(x)=(sqrt(1+e^(x))-1)/(sqrt(1+e^(x))+1`

C

`g(x)=(sqrt(1+e^(x))+1)/(sqrt(1+e^(x))-1)`

D

`f(x)=2(x-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x e^x}{\sqrt{1 + e^x}} \, dx \) and express it in the form \( f(x) \sqrt{1 + e^x} - 2 \log g(x) + C \), we will follow these steps: ### Step 1: Integration by Parts We start by using integration by parts, where we let: - \( u = x \) (thus \( du = dx \)) - \( dv = \frac{e^x}{\sqrt{1 + e^x}} \, dx \) Using the integration by parts formula: \[ \int u \, dv = u \int v - \int v \, du \] we need to compute \( \int dv \). ### Step 2: Compute \( \int dv \) To find \( v \), we need to evaluate: \[ v = \int \frac{e^x}{\sqrt{1 + e^x}} \, dx \] We can use the substitution \( t = e^x \), which gives \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). The integral becomes: \[ v = \int \frac{t}{\sqrt{1 + t}} \cdot \frac{dt}{t} = \int \frac{1}{\sqrt{1 + t}} \, dt \] The integral \( \int \frac{1}{\sqrt{1 + t}} \, dt \) can be computed as: \[ = 2 \sqrt{1 + t} + C = 2 \sqrt{1 + e^x} + C \] ### Step 3: Substitute Back into Integration by Parts Now substituting back into the integration by parts formula: \[ \int \frac{x e^x}{\sqrt{1 + e^x}} \, dx = x \cdot (2 \sqrt{1 + e^x}) - \int 2 \sqrt{1 + e^x} \, dx \] ### Step 4: Compute \( \int 2 \sqrt{1 + e^x} \, dx \) Now we need to compute: \[ \int 2 \sqrt{1 + e^x} \, dx \] Using the substitution \( t = e^x \), we have \( dx = \frac{dt}{t} \): \[ \int 2 \sqrt{1 + t} \cdot \frac{dt}{t} \] This integral can be simplified and computed using standard techniques, which will yield a logarithmic term. ### Step 5: Combine Results After evaluating the integral \( \int 2 \sqrt{1 + e^x} \, dx \), we combine the results from the integration by parts to express the final result in the required form: \[ \int \frac{x e^x}{\sqrt{1 + e^x}} \, dx = f(x) \sqrt{1 + e^x} - 2 \log g(x) + C \] ### Step 6: Identify \( f(x) \) and \( g(x) \) From our computations: - \( f(x) \) corresponds to the coefficient of \( \sqrt{1 + e^x} \) from the integration by parts. - \( g(x) \) corresponds to the logarithmic term derived from the integral of \( 2 \sqrt{1 + e^x} \). ### Final Result Thus, we can conclude: - \( f(x) = x \) - \( g(x) = \text{(expression derived from logarithmic integral)} \)

To solve the integral \( \int \frac{x e^x}{\sqrt{1 + e^x}} \, dx \) and express it in the form \( f(x) \sqrt{1 + e^x} - 2 \log g(x) + C \), we will follow these steps: ### Step 1: Integration by Parts We start by using integration by parts, where we let: - \( u = x \) (thus \( du = dx \)) - \( dv = \frac{e^x}{\sqrt{1 + e^x}} \, dx \) Using the integration by parts formula: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

inte^(2x)/(4sqrt(e^x+1))dx

Evaluate: int(e^x)/(sqrt(4-e^(2x)))dx

Evaluate: int(e^x)/(sqrt(16-e^(2x))) dx

int(e^x)/((1+e^x)(2+e^x))dx

int x.e^(2x)dx

Evaluate: int(dx)/(sqrt(2e^(x)-1))=

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

Evaluate: inte^(2x)/(4sqrt (e^x+1))dx

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

If int(x-1)/(x^2sqrt(2x^2-2x-1))dx = sqrt(f(x))/g(x) +c then the value of f(x) and g(x) is