Home
Class 12
MATHS
If f(x)={{:(sqrt({x}),"for",xcancelinZ),...

If `f(x)={{:(sqrt({x}),"for",xcancelinZ),(1,"for",x in Z):} and g(x)={x}^(2)` where {.} denotes fractional part of x then area bounded by f(x) and g(x) for `x in 0,6 ` is

A

`(2)/(3)`

B

2

C

`(10)/(3)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by the functions \( f(x) \) and \( g(x) \) for \( x \) in the interval \( [0, 6] \), we will follow these steps: ### Step 1: Define the functions The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \sqrt{x} & \text{for } x \notin \mathbb{Z} \\ 1 & \text{for } x \in \mathbb{Z} \end{cases} \] The function \( g(x) = x^2 \). ### Step 2: Identify the intervals The interval \( [0, 6] \) contains the integers \( 0, 1, 2, 3, 4, 5, 6 \). We will analyze the area between \( f(x) \) and \( g(x) \) in the intervals: - \( [0, 1) \) - \( [1, 2) \) - \( [2, 3) \) - \( [3, 4) \) - \( [4, 5) \) - \( [5, 6) \) ### Step 3: Calculate the area in each interval 1. **Interval \( [0, 1) \)**: \[ f(x) = \sqrt{x}, \quad g(x) = x^2 \] The area \( A_1 \) is given by: \[ A_1 = \int_0^1 (\sqrt{x} - x^2) \, dx \] 2. **Interval \( [1, 2) \)**: \[ f(x) = 1, \quad g(x) = x^2 \] The area \( A_2 \) is given by: \[ A_2 = \int_1^2 (1 - x^2) \, dx \] 3. **Interval \( [2, 3) \)**: \[ f(x) = 1, \quad g(x) = x^2 \] The area \( A_3 \) is given by: \[ A_3 = \int_2^3 (1 - x^2) \, dx \] 4. **Interval \( [3, 4) \)**: \[ f(x) = 1, \quad g(x) = x^2 \] The area \( A_4 \) is given by: \[ A_4 = \int_3^4 (1 - x^2) \, dx \] 5. **Interval \( [4, 5) \)**: \[ f(x) = 1, \quad g(x) = x^2 \] The area \( A_5 \) is given by: \[ A_5 = \int_4^5 (1 - x^2) \, dx \] 6. **Interval \( [5, 6) \)**: \[ f(x) = 1, \quad g(x) = x^2 \] The area \( A_6 \) is given by: \[ A_6 = \int_5^6 (1 - x^2) \, dx \] ### Step 4: Calculate each integral 1. **For \( A_1 \)**: \[ A_1 = \int_0^1 (\sqrt{x} - x^2) \, dx = \left[ \frac{2}{3} x^{3/2} - \frac{1}{3} x^3 \right]_0^1 = \frac{2}{3} - \frac{1}{3} = \frac{1}{3} \] 2. **For \( A_2 \)**: \[ A_2 = \int_1^2 (1 - x^2) \, dx = \left[ x - \frac{1}{3} x^3 \right]_1^2 = \left( 2 - \frac{8}{3} \right) - \left( 1 - \frac{1}{3} \right) = \left( \frac{6}{3} - \frac{8}{3} \right) - \left( \frac{3}{3} - \frac{1}{3} \right) = -\frac{2}{3} + \frac{2}{3} = 0 \] 3. **For \( A_3 \)**: \[ A_3 = \int_2^3 (1 - x^2) \, dx = \left[ x - \frac{1}{3} x^3 \right]_2^3 = \left( 3 - \frac{27}{3} \right) - \left( 2 - \frac{8}{3} \right) = \left( 3 - 9 \right) - \left( 2 - \frac{8}{3} \right) = -6 + \frac{6}{3} = -6 + 2 = -4 \] 4. **For \( A_4 \)**: \[ A_4 = \int_3^4 (1 - x^2) \, dx = \left[ x - \frac{1}{3} x^3 \right]_3^4 = \left( 4 - \frac{64}{3} \right) - \left( 3 - \frac{27}{3} \right) = \left( 4 - \frac{64}{3} \right) - \left( 3 - 9 \right) = -\frac{12}{3} + \frac{64}{3} = \frac{52}{3} \] 5. **For \( A_5 \)**: \[ A_5 = \int_4^5 (1 - x^2) \, dx = \left[ x - \frac{1}{3} x^3 \right]_4^5 = \left( 5 - \frac{125}{3} \right) - \left( 4 - \frac{64}{3} \right) = \left( 5 - \frac{125}{3} \right) - \left( 4 - \frac{64}{3} \right) = \frac{15}{3} - \frac{125}{3} + \frac{64}{3} = -\frac{46}{3} \] 6. **For \( A_6 \)**: \[ A_6 = \int_5^6 (1 - x^2) \, dx = \left[ x - \frac{1}{3} x^3 \right]_5^6 = \left( 6 - \frac{216}{3} \right) - \left( 5 - \frac{125}{3} \right) = \left( 6 - 72 \right) - \left( 5 - \frac{125}{3} \right) = -66 + \frac{125}{3} = -66 + 41.67 = -24.33 \] ### Step 5: Sum the areas Now, we sum the areas from all intervals: \[ \text{Total Area} = A_1 + A_2 + A_3 + A_4 + A_5 + A_6 = \frac{1}{3} + 0 - 4 + \frac{52}{3} - \frac{46}{3} - 24.33 \] ### Final Calculation After calculating the total area, we find the area bounded by \( f(x) \) and \( g(x) \) for \( x \in [0, 6] \).

To find the area bounded by the functions \( f(x) \) and \( g(x) \) for \( x \) in the interval \( [0, 6] \), we will follow these steps: ### Step 1: Define the functions The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \sqrt{x} & \text{for } x \notin \mathbb{Z} \\ ...
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|3 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE ENGLISH|Exercise Comprehension Type|5 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Matrix|4 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

If f(x) = {{:(x+{x}+x sin {x}",","for",x ne 0),(0",","for",x = 0):} , where {x} denotes the fractional part function, then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

If f(x)={(sqrt({x}), x !in Z),(1, x in Z):} and g(x)={x}^2 then area bounded by f(x) and g(x) for x in [0,10] is

If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractional part function then the find range of f(g(x))

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

Discuss the minima of f(x)={x}, (where{,} denotes the fractional part of x)for x=6.

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

CENGAGE ENGLISH-AREA-Single Correct Answer Type
  1. The area bounded by the curve y=sin^(2)x-2 sin x and the x-axis, wher...

    Text Solution

    |

  2. Consider the functions f(x) and g(x), both defined from R rarrR and ar...

    Text Solution

    |

  3. Let a function f(x) be defined in [-2, 2] as f(x) = {{:({x}",",, -2 ...

    Text Solution

    |

  4. The area bounded by y=x^(2)+2 and y=2|x|-cospi x is equal to

    Text Solution

    |

  5. Area bounded by f(x)=(x^(2)-1)/(x^(2)+1) and the line y = 1 is

    Text Solution

    |

  6. The area bounded by the curve y=xe^(-x);xy=0and x=c where c is the x-c...

    Text Solution

    |

  7. Area of region bounded by the curve y=(16-x^(2))/(4) and y=sec^(-1)[-s...

    Text Solution

    |

  8. Suppose y=f(x) and y=g(x) are two continuous functiond whose graphs in...

    Text Solution

    |

  9. The ratio of the areas of two regions of the curve C(1)-=4x^(2)+pi^(2)...

    Text Solution

    |

  10. The area bounded by the curves xsqrt3+y=2log(e)(x-ysqrt3)-2log(e)2, ...

    Text Solution

    |

  11. Area of region bounded by the curve y=(4-x^(2))/(4+x^(2)), 25y^(2)=9x ...

    Text Solution

    |

  12. Area bounded by the min. {|x|,|y|}=1 and the max. {|x|,|y|}=2 is

    Text Solution

    |

  13. Consider f(x)={{:(cosx,0lexlt(pi)/(2)),(((pi)/(2)-x)^(2),(pi)/(2)lexlt...

    Text Solution

    |

  14. The area made by curve f(x)=[x]+sqrt(x-[x]) and x-axis when 0le xle n ...

    Text Solution

    |

  15. Consider the regions A={(x,y)|x^(2)+y^(2)le100} and B=|(x,y)|sin(x+y)g...

    Text Solution

    |

  16. Let R be the region containing the point (x, y) on the X-Y plane, sati...

    Text Solution

    |

  17. If f(x)={{:(sqrt({x}),"for",xcancelinZ),(1,"for",x in Z):} and g(x)={x...

    Text Solution

    |

  18. Let S is the region of points which satisfies y^(2)lt16x,x lt4 and (xy...

    Text Solution

    |

  19. The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

    Text Solution

    |

  20. The folloiwng figure shows the graph of a continuous function y = f(x)...

    Text Solution

    |