Home
Class 12
MATHS
Tangent to a curve intercepts the y-axis...

Tangent to a curve intercepts the y-axis at a point `Pdot` A line perpendicular to this tangent through `P` passes through another point (1,0). The differential equation of the curve is (a) `( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x )` (y) (b) `( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d )` (eee) (c) `( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l )` (m) (d) None of these

A

`y.(dy)/(dx)-x((dy)/(dx))^(2)=1`

B

`x(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=1`

C

`y.(dx)/(dy)+x = 1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will derive the differential equation of the curve based on the given conditions. ### Step 1: Understand the Tangent Line The equation of the tangent line to the curve \( y = f(x) \) at the point \( (x, f(x)) \) can be expressed as: \[ y - f(x) = f'(x)(x - x_0) \] where \( f'(x) \) is the derivative of \( f(x) \) at point \( x_0 \). ### Step 2: Find the y-intercept The y-intercept occurs when \( x = 0 \). Substituting \( x = 0 \) into the tangent equation gives: \[ y - f(x) = f'(x)(0 - x_0) \implies y = f(x) - f'(x)x_0 \] Let \( P \) be the point where the tangent intercepts the y-axis, so the coordinates of \( P \) are \( (0, f(x) - f'(x)x_0) \). ### Step 3: Slope of the Perpendicular Line The slope of the tangent line at point \( (x, f(x)) \) is \( f'(x) \). Therefore, the slope of the line perpendicular to the tangent at point \( P \) is: \[ -\frac{1}{f'(x)} \] ### Step 4: Equation of the Perpendicular Line The equation of the line perpendicular to the tangent through point \( P(0, f(x) - f'(x)x_0) \) can be written as: \[ y - (f(x) - f'(x)x_0) = -\frac{1}{f'(x)}(x - 0) \] This simplifies to: \[ y = -\frac{1}{f'(x)}x + \left(f(x) - f'(x)x_0\right) \] ### Step 5: Condition of Passing Through (1, 0) Since this perpendicular line passes through the point \( (1, 0) \), we can substitute \( x = 1 \) and \( y = 0 \): \[ 0 = -\frac{1}{f'(x)}(1) + \left(f(x) - f'(x)x_0\right) \] Rearranging gives: \[ f'(x)x_0 = f(x) - \frac{1}{f'(x)} \] ### Step 6: Deriving the Differential Equation From the equation above, we can express \( x_0 \) in terms of \( f(x) \) and \( f'(x) \): \[ x_0 = \frac{f(x) - \frac{1}{f'(x)}}{f'(x)} \] Now, substituting \( x_0 \) back into the tangent equation and simplifying leads us to the differential equation: \[ y \frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^2 = 1 \] ### Final Differential Equation Thus, the final differential equation of the curve is: \[ y \frac{dy}{dx} - x \left(\frac{dy}{dx}\right)^2 = 1 \] ### Conclusion The correct option for the differential equation of the curve is (a). ---

To solve the problem step by step, we will derive the differential equation of the curve based on the given conditions. ### Step 1: Understand the Tangent Line The equation of the tangent line to the curve \( y = f(x) \) at the point \( (x, f(x)) \) can be expressed as: \[ y - f(x) = f'(x)(x - x_0) \] where \( f'(x) \) is the derivative of \( f(x) \) at point \( x_0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answerts type|5 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos

Similar Questions

Explore conceptually related problems

Tangent to a curve intercepts the y-axis at a point P .A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

The differential equation of all non-horizontal lines in a plane is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q) (r) (s) (b) ( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=0( j j ) (kk) (c) ( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)=0( l ) (m) (d) ( n ) (o) (p)(( q ) dx)/( r )(( s ) dy)( t ) (u)=0( v ) (w)

The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)

The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (a) ( b ) (c) (d) x^(( e )2( f ))( g ) y+( h )(( i ) (j) x^(( k )3( l ))( m ) (n) y^(( o )3( p ))( q ))/( r )3( s ) (t)=c (u) (v) (b) ( w ) (x) x (y) y^(( z )2( a a ))( b b )+( c c )(( d d ) (ee) x^(( f f )3( g g ))( h h ) (ii) y^(( j j )3( k k ))( l l ))/( m m )3( n n ) (oo)=c (pp) (qq) (c) ( d ) (e) (f) x^(( g )2( h ))( i ) y+( j )(( k ) (l) x^(( m )4( n ))( o ) (p) y^(( q )4( r ))( s ))/( t )4( u ) (v)=c (w) (x) (d) None of these

A curve passing through (2,3) and satisfying the differential equation int_0^x ty(t)dt=x^2y(x),(x >0) is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=13 (l) (m) (b) ( n ) (o) (p) y^(( q )2( r ))( s )=( t )9/( u )2( v ) (w) x (x) (y) (c) ( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l )8( m ) (n)+( o )(( p ) (q) y^(( r )2( s ))( t ))/( u )(( v ) 18)( w ) (x)=1( y ) (z) (d) ( a a ) (bb) x y=6( c c ) (dd)

The measure of an angle which is its own complement is (a) ( b ) (c) (d) (e) 30^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 60^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 90^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 45^(( q )0( r ))( s ) (t) (u)

The differential equation of the family of curves y=e^x(Acosx+Bsinx), where A and B are arbitrary constants is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)-2( r )(( s ) dy)/( t )(( u ) dx)( v ) (w)+2y=0( x ) (y) (z) ( a a ) (bb) (cc)(( d d ) (ee) d^(( f f )2( g g ))( h h ) y)/( i i )(( j j ) d (kk) x^(( l l )2( m m ))( n n ))( o o ) (pp)+2( q q )(( r r ) dy)/( s s )(( t t ) dx)( u u ) (vv)+2y=0( w w ) (xx) (yy) ( z z ) (aaa) (bbb)(( c c c ) (ddd) d^(( e e e )2( f f f ))( g g g ) y)/( h h h )(( i i i ) d (jjj) x^(( k k k )2( l l l ))( m m m ))( n n n ) (ooo)+( p p p ) (qqq)(( r r r ) (sss) (ttt)(( u u u ) dy)/( v v v )(( w w w ) dx)( x x x ) (yyy) (zzz))^(( a a a a )2( b b b b ))( c c c c )+y=0( d d d d ) (eeee) (ffff) ( g g g g ) (hhhh) (iiii)(( j j j j ) (kkkk) d^(( l l l l )2( m m m m ))( n n n n ) y)/( o o o o )(( p p p p ) d (qqqq) x^(( r r r r )2( s s s s ))( t t t t ))( u u u u ) (vvvv)-7( w w w w )(( x x x x ) dy)/( y y y y )(( z z z z ) dx)( a a a a a ) (bbbbb)+2y=0( c c c c c ) (ddddd)

In Fig.93, if A O C is a straight line, then x= (a) ( b ) (c) (d) (e) 42^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 52^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 142^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 38^(( q )0( r ))( s ) (t) (u)

The equation of the curves through the point (1, 0) and whose slope is (y-1)/(x^2+x) is (a) ( b ) (c)(( d ) (e) y-1( f ))(( g ) (h) x+1( i ))+2x=0( j ) (k) (l) ( m ) (n)2x(( o ) (p) y-1( q ))+x+1=0( r ) (s) (t) ( u ) (v) x(( w ) (x) y-1( y ))(( z ) (aa) x+1( b b ))+2=0( c c ) (dd) (ee)None of these

CENGAGE ENGLISH-DIFFERENTIAL EQUATIONS-Single Correct Answer Type
  1. Solution of differential equation x^(2)y - x^(3) (dy)/(dx)=y^(4) cos x...

    Text Solution

    |

  2. Suppose a solutions of the differential equation (xy^3 + x^2y^7) dy/dx...

    Text Solution

    |

  3. The general solution of the differential equation (dy)/(dx) = y tan x ...

    Text Solution

    |

  4. The solution of differential equation x^(2)(x dy + y dx) = (xy - 1)^(2...

    Text Solution

    |

  5. Solution of the differential (x+2y^(3))=(dx)/(dy)y is

    Text Solution

    |

  6. General solution of differential equation x^(2)(x+y(dy)/(dx))+(x(dy)/(...

    Text Solution

    |

  7. Solution of the differential y' = (3yx^(2))/(x^(3)+2y^(4)) is

    Text Solution

    |

  8. For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, ...

    Text Solution

    |

  9. An equation of the curve satisfying x dy - y dx = sqrt(x^(2)-y^(2))dx ...

    Text Solution

    |

  10. The solution of (y(1+x^(-1))+siny)dx +(x+log x +x cos y)dy=0 is

    Text Solution

    |

  11. The solution of (1+x)(dy)/(dx)+1=e^(x-y) is

    Text Solution

    |

  12. The solution of differential equation x sec((y)/(x))(y dx + x dy)="y c...

    Text Solution

    |

  13. The general solution of the differential equation sqrt(1-x^(2)y^(2)) d...

    Text Solution

    |

  14. (1 + xy) ydx + (1-xy)xdy = 0

    Text Solution

    |

  15. Solution of the differential equation dy/dx=(y^3)/(e^(2x)+y^2) , is

    Text Solution

    |

  16. A popular grows at the rate of 10% of the population per year. How lon...

    Text Solution

    |

  17. A tangent drawn to the curve y = f(x) at P(x, y) cuts the x and y axes...

    Text Solution

    |

  18. A curve 'C' with negative slope through the point(0,1) lies in the I Q...

    Text Solution

    |

  19. Tangent to a curve intercepts the y-axis at a point Pdot A line ...

    Text Solution

    |

  20. The orthogonal trajectories of the family of curves an a^(n-1)y = x^n ...

    Text Solution

    |