Home
Class 12
MATHS
Find the range of values of a if f(x)=2e...

Find the range of values of `a` if `f(x)=2e^x-a e^(-x)+(2a+1)x-3` is monotonically increasing for all values of `xdot`

Text Solution

Verified by Experts

f(x) =`2e^(+)+ae^(-x)+ae^(-x)+2a+1`
`=e^(-x)(2e^(2x))+(2a+1)e^(x)+a)`
`=e^(-x)(e^(x)+a)(2e^(e^(x))+1)`
For f(x) to be increasing f(x) to the increasing `f(x)ge 0 forall` x in R
`rarr e^(x)+age0forall` x in R
`rarr age-e^(x)forall` x in R
`rarr age0`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

if f(x) =2e^(x) -ae^(-x) +(2a +1) x-3 monotonically increases for AA x in R then the minimum value of 'a' is

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is monotonically increasing for x in Rdot

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is monotonically increasing for x in Rdot

The set of values of a for which the function f(x)=2e^x-ae^(-x)+(2a+1)x-3) is increasing on R,is

Find possible values of 'a' such that f(x) =e^(2x) -2(a^(2) -21) e^(x)+ 8x+5 is monotonically increasing for x in R.

Let set of all possible values of lamda such that f (x)= e ^(2x) - (lamda+1) e ^(x) +2x is monotonically increasing for AA x in R is (-oo, k]. Find the value of k.

Find the values of a for which the function f(x)=(a+2)x^3-3a x^2+9a x-1 decreasing for all real values of xdot

The function y=2x^2-log(x) is monotonically increasing for values of x(!=0) satisfying the inequalities____ and monotonically decreasing for values of x satisfying the inequalities_____.

If a lt 0 and f(x)=e^(ax )+ e^(-ax) is monotonically decreasing . Find the interval to which x belongs.

Find all the possible values of f(x) =(1-x^2)/(x^2+3)