Home
Class 12
MATHS
Find the interval of monotonocity of the...

Find the interval of monotonocity of the function `f(x)=|x-1|x^2dot`

Text Solution

AI Generated Solution

To find the intervals of monotonicity of the function \( f(x) = |x - 1| x^2 \), we will follow these steps: ### Step 1: Define the function based on the absolute value The function \( f(x) = |x - 1| x^2 \) can be split into two cases based on the value of \( x \): 1. **Case 1**: When \( x \geq 1 \), \( |x - 1| = x - 1 \) \[ f(x) = (x - 1)x^2 = x^3 - x^2 ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the interval of monotonocity of the function f(x)=|x-1|/x^2dot

Separate the intervals of monotonocity of the function: f(x)=3x^4-8x^3-6x^2+24 x+7

Separate the intervals of monotonocity for the function f(x)=-2x^3-9x^2-12 x+1

Separate the intervals of monotonocity for the function f(x)=x^2e^(-x)

Separate the intervals of monotonocity of the function: f(x)=-sin^3x+3sin^2x+5,x in [-pi/2,pi/2]dot

Separate the intervals of monotonocity for the function f(x)=((log)_e x)^2+((log)_e x)

Separate the intervals of monotonocity for the function f(x)=3cos^4x+10cos^3x+6cos^2x-3,x in [0,pi]

Find the intervals of monotonicity of the following functions. (i) f(x) =-x^(3) +6x^(2)-gx-2 (ii) f(x) =x+(1)/(x+1) (iii) f(x) =x. e^(x-x^(2)) (iv) f(x) =x- cosx

Separate the intervals of monotonocity for the following function: (a) f(x) =-2x^(3)-9x^(2)-12x+1 (b) f(x)=x^(2)e^(-x) (c ) f(x) =sinx+cosx,x in (0,2pi) (d) f(x) =3cos^(4)x+cosx,x in (0,2 pi) (e ) f(x)=(log_(e)x)^(2)+(log_(e)x)

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function