Home
Class 12
MATHS
Prove that e^(x) ge 1 +x and hence e^(x)...

Prove that `e^(x) ge 1 +x` and hence `e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall` x in R

Text Solution

AI Generated Solution

To prove that \( e^x \geq 1 + x \) and hence \( e^x + \sqrt{1 + e^{2x}} \geq 1 + x + \sqrt{2 + 2x + x^2} \) for all \( x \in \mathbb{R} \), we will follow these steps: ### Step 1: Prove \( e^x \geq 1 + x \) 1. **Consider the function** \( f(x) = e^x - (1 + x) \). 2. **Calculate the derivative**: \[ f'(x) = e^x - 1 ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

inte^(2x)/(4sqrt(e^x+1))dx

Solve sqrt(x-2) ge -1.

Evaluate: int(e^x)/(sqrt(16-e^(2x)))

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

solve sqrt(x+2) ge x

Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))

∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))