Home
Class 12
MATHS
Prove that a(1)^(m)+a(2)^(m)+….+a(n)^(m)...

Prove that `a_(1)^(m)+a_(2)^(m)+….+a_(n)^(m)()/(n)lt(a_(1)+a_(2)+..+a_(n))/(n)^(m)`
If `0ltmlt1 and a_(i)gt0` for all I.

Text Solution

Verified by Experts

Consider function y=f(x) =`x^(m)` where x `gt` 0 and m`lt` 0 or m`gt`1
`therefore (dy)/(dx)=mx^(m-1)` and `(d^(2)y)/(dx^(2))=m(m-1)x^(m-2)`
since x `gt` 0 and x`lt`0 or m `gt` 1,`(d^(2)y)/(dbx^(2))gt0`
So, graph of function is concave upward.
Therefore `(overset(n)underset(i=1)Sigmaf(x_(1)))/(n)gtf((overset(n)underset(n)Sigma x_(1))/(n))`
or `a_(1)^(m)+a_+(2)^(m)+...A_(n)^(m)/(n)gt((a_(1)+a_(2)+...a_(n))/(n^(m)))`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

a1,a2,a3.....an are in H.P. (a_(1))/(a_(2)+a_(3)+ . . .+a_(n)),(a_(2))/(a_(1)+a_(3)+ . . . +a_(n)),(a_(3))/(a_(1)+a_(2)+a_(4)+ . . .+a_(n)), . . .,(a_(n))/(a_(1)+a_(2)+ . . . +a_(n-1)) are in

Differentiate |x|+a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-1)+...+a_(n-1)x+a_(n)

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If a_(1), a_(2), . . . , a_(n) is a sequence of non-zero number which are in A.P., show that (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+. . . + (1)/(a_(n)a_(1))= (2)/(a_(1) + a_(n)) [(1)/(a_(1))+(1)/(a_(2))+. . . +(1)/(a_(n))]

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))