Home
Class 12
MATHS
Determine which is bigger,(1)/(pi)^(1/e)...

Determine which is bigger,`(1)/(pi)^(1/e) or (1)/(e )^((1)/(pi))`?

Text Solution

AI Generated Solution

To determine which of the two expressions \(\frac{1}{\pi^{1/e}}\) or \(\frac{1}{e^{1/\pi}}\) is larger, we can follow these steps: ### Step 1: Compare the bases We know that \(\pi\) is greater than \(e\) (i.e., \(\pi > e\)). This is an important observation that will help us compare the two expressions. **Hint:** Remember that if \(a > b\), then \(a^x > b^x\) for any positive \(x\). ### Step 2: Raise both sides to the power of \(e\) and \(\pi\) ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Determine the value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx .

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

statement1: e^pi is bigger than pi^e statement 2: f(x)=x^(1/x) is an increasing function whenn xe[e,oo)

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2) is (17pi)/(42)-2 (b) -2 (-pi)/(21)-2 (d) non eoft h e s e

Use the function f(x)=x^(1/x),x >0, to determine the bigger of the two numbers e^(pi)a n dpi^edot

Which of the following is true? (a) pi/3>tan^(-1)pi/3 (b) pi/3 cos^(-1)pi/4'

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to