Home
Class 12
MATHS
If 1f(x)={x^(2),xle0.Investigate the fun...

If 1`f(x)={x^(2),xle0`.Investigate the functions at x for maxima/manima

Text Solution

Verified by Experts

Clearly `f(x) =f(x^(+))=underset(xrarr0)lim (2sinx)=0^(+)`
Also `f(0^(-))=underset(xrarr0)lim x^(2)=0^(+)`
Thus f(x) is continous at x=0
`f(0)ltf(0+delta)and f(0)ltf(0-delta)`
Thus x=0 is point of minima
We can draw the graph of the function to verify this

Also f(x) =`{2x,xle0`
`2cos x xge0`
`f(0-delta)lt0` and `f(0+delta)gt0`
Thus derivative changes sign from negative to positive with f(0)=0
So x=0 is point of minima.
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)={x^2,xlt=0 2sinx ,x >0'in v e s t iga t et h e function at x=0 for maxima/minima

Let f(x)= {x^(3)+x^(2)+10x, xlt0 .Investigate x=0 for local -3sinx,xge0 maxima/minima.

if f(x)=x^2sin(1/x) , x!=0 then the value of the function f at x=0 so that the function is continuous at x=0

If f(x)={(sin(x^(2)-3x),xle0 6x+5x^(2),xgt0 then at x=0, f(x) is?

The value of the function (x-1)(x-2)^2 at its maxima is

If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(x+2) , then

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

Let f(x)={:{(6","xle1),(7-x","xgt1):} 'then for f(x) at x=1 discuss maxima and minima.

STATEMENT-1: f(x)=|x-1|+|x+2|+|x-3| has a local minima . and STATEMENT-2 : Any differentiable function f(x) may have a local maxima or minima if f'(x)=0 at some points

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.