Home
Class 12
MATHS
f(x)={cos(pix)/2,x >0 x+a ,xlt=0 Find...

`f(x)={cos(pix)/2,x >0 x+a ,xlt=0` Find the values of `a` if `x=0` is a point of maxima.

Text Solution

Verified by Experts

For `xlt0f(x)=x+a`, which is increasing
For `0lt xlt2f(x) = cos (pix)/(2)` which is decreasing
x=0 is point of maxima `f(0)ge underset(xrarr0+)limf(x)`
`f(x)geunderset(xrarr0+)lim cos (pix)/(2)`
`age1`

Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(1-cos4x)/(x^2),\ \ \ if\ x 0 Determine the value of a so that f(x) is continuous at x=0.

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

If f(x)={-(cos^2pix)/2,0lt=x<1(1-x)^2,0lt=xlt=2 the number of values of ' c ' obtained by applying LMVT on f(x) in interval [0, 2] is 1 (b) 2 (c) 3 (d) LMVT is not applicable

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

Let f(x) = sin x (1+cos x) , x in (0,2pi). Find the number of critical points of f(x) . Also identify which of these critical points are points of Maxima // Minima.

if f(x) ={underset( cos x " "x ge 0)((x+lambda)^(2) " " x lt 0). find possible values of lambda such that f(x) has local maxima at x=0

Let f(x) = {{:(x(x-1)(x-2),(0lexltn),sin(pix),(nlexle2n):} least value of n for which f(x) has more points of minima than maxima in [0,2n] is _____.

If xlt0 and (2x-1)^(2)=25 , what is the value of x?

Find the points of local maxima or minima and corresponding local maximum and minimum values of f(x)=xsqrt(1-x),\ \ xlt=1 , x >0,\ \ x in R . Also, find the points of inflection, if any:

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).