Home
Class 12
MATHS
Find the range of the function f(x)=2sqr...

Find the range of the function `f(x)=2sqrt(x-2)+sqrt(4-x)`

Text Solution

Verified by Experts

Clearly domain of the function is [2,4] Now ,
`f(x) =(1)/sqrt(x-2)-(1)/2sqrt(4-x)`
f(x)=0
or `sqrt(x-2)=2sqrt(4-x)`
or x-2=16-4x
or `x=(18)/(5)`
Now f(2)=`sqrt(2),f(18/5)=2sqrt(18)/(5)-2+sqrt(4-(18)/(5)=sqrt(10)`
f(4)=`2sqrt(2)`
Hence range of the function is `sqrt(2),sqrt(10)`
Also here `x=(18//5)` is the point of global maxima.
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

Find the range of the function f(x)=x^2-2x-4.

Range of the function f(x)= log_2(sqrt(x-2)+sqrt(4-x)) is

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The number of integers in the range of the function f(x)=|4((sqrt(cos"x")-sqrt(sinx))(sqrt(cos"x")+sqrt(sinx)))/(cosx+sinx)| is______

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The range of the function f(x) = sqrt(4 - x^2) + sqrt(x^2 - 1) is

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

Find the domain and range of the function f(x)=sqrt(x-5) .

Find the domain and range of the function f(x)=(1)/sqrt(x-5)