Home
Class 12
MATHS
Using the relation 2(1−cosx)<x^2 ,x=0 or...

Using the relation `2(1−cosx)`<`x^2` ,`x=0` or prove that `sin(tanx)≥x,∀ϵ[0,π/4]`

Text Solution

Verified by Experts

Give that `2(1-cosx)ltx^(2),xne0`
To prove sin `(tanx)gex,x in [0,pi//4]`, let us consider
f(x)=sin(tanx )-x
f(x) =cos (tanx ) `sec^(2)x-1`
`=(cos(tanx)-cos^(2)x)/(cost(2))x`
`sin^(2)x(1-(1))/(2cos^(2)x(cost(2))x`
`=sin^(2)x(cos2x)/(2cos^(4))x gt 0 forall x in [0,[pi//4]`
Therefore `f(x)gt0` .Thus f(x) is an increasing function
so ,for x in `[0,pi//4]`we have
`xge0` or `f(x) gef(0)`
`sin(tanx)-xgesin(tan 0)-0`
`sin(tan x)-xge0`
`sin (tan x)gex`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation (secx)/(1-cosx)=1/(1-cosx) in [0,\ 2pi] is equal to 3 (b) 2 (c) 1 (d) 0

Solutions of the equations (2cosx-1)(3cosx+4)=0 is [0,2pi] is:

Integrate the functions (1-cosx)/(1+cosx)

Integrate the functions (cosx)/(1+cosx)

Using constraint method find the relation between of a_(1) and a_ (2) .

Using constraint method find the relation between accelerations of 1 and 2 .

Using contraint equation. Find the relation between a_(1) and a_(2).

Find the solution of cosx = 1/2 .

If x_(1),x_(2),...,x_(n) are real numbers, then the largest value of the expression sinx_(1)cosx_(2)+sinx_(2)cosx_(3)+...+sinx_(n)cosx_(1), is

solve equation 2 tan^(-1)(cosx)=tan^(-1)(2cosecx)

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Solved Examples
  1. Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is mon...

    Text Solution

    |

  2. Of f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)(lambda^2-5l...

    Text Solution

    |

  3. Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rd...

    Text Solution

    |

  4. Prove that [lim(xrarr0) (sinx.tanx)/(x^(2))]=1,where [.] represents gr...

    Text Solution

    |

  5. Using the relation 2(1−cosx)<x^2 ,x=0 or prove that sin(tanx)≥x,∀ϵ[0,...

    Text Solution

    |

  6. lf f'(x) > 0,f"(x)>0AA x in (0,1) and f(0)=0,f(1)=1,then prove that...

    Text Solution

    |

  7. Discuss the monotonocity of Q(x), where Q(x)=2f((x^2)/2)+f(6-x^2)AAx i...

    Text Solution

    |

  8. Prove that (tan^(-1)(1/e))^(2)+(2e)/(sqrt(e^(2)+1) lt (tan^(-1) e)^2 +...

    Text Solution

    |

  9. Prove that sin^2thetathetasin(sintheta)for0<thetatheta<pi

    Text Solution

    |

  10. Let f(x) = 1 + 4x - x^(2), AA x in R g(x) = max {f(t), x le t le (x ...

    Text Solution

    |

  11. Show that 5x le 8 cos x-2cos 2x le 6x for x le x le (pi)/(3)

    Text Solution

    |

  12. Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)...

    Text Solution

    |

  13. If a x^2+b/xgeqc for all positive x where a >0 and b >0, show that 27 ...

    Text Solution

    |

  14. Prove that for x in [0, (pi)/(2)], sin x + 2x ge (3x(x + 1))/(pi).

    Text Solution

    |

  15. Consider a curve C : y=cos^(-1)(2x-1) and a straight line L :2p x-4y+2...

    Text Solution

    |

  16. From a fixed point A on the circumference of a circle of radius r , th...

    Text Solution

    |

  17. Pa n dQ are two points on a circle of centre C and radius alpha . The ...

    Text Solution

    |

  18. The lower corner of a leaf in a book is folded over so as to reach the...

    Text Solution

    |

  19. Let A(p^2,-p),B(q^2, q),C(r^2,-r) be the vertices of triangle ABC. A p...

    Text Solution

    |

  20. A window of perimeter P (including the base of the arch) is in the ...

    Text Solution

    |