Home
Class 12
MATHS
Show that 5x le 8 cos x-2cos 2x le 6x fo...

Show that `5x le 8 cos x-2cos 2x le 6x` for `x le x le (pi)/(3)`

Text Solution

AI Generated Solution

To show that \( 5x \leq 8 \cos x - 2 \cos 2x \leq 6x \) for \( 0 \leq x \leq \frac{\pi}{3} \), we will analyze the function \( f(x) = 8 \cos x - 2 \cos 2x \) and compare it with the linear functions \( 5x \) and \( 6x \). ### Step 1: Differentiate the function First, we differentiate the function \( f(x) \): \[ f'(x) = \frac{d}{dx}(8 \cos x - 2 \cos 2x) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

2 le 3x - 4 le 5 find x

Find the coodinates of the point of intersection of the curves y= cos x , y= sin 3x if -(pi)/(2) le x le (pi)/(2)

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

Solve 2sinx+cos2x+2sin^(2)x-1 for 0 le x le 2pi .

The number of points in interval [ - (pi)/(2) , (pi)/(2)], where the graphs of the curves y = cos x and y= sin 3x , -(pi)/(2) le x le (pi)/(2) intersects is

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos x* sin^(3) x , 0 le x le 2pi .

Find the set of values of x , which satisfy sin x * cos^(3) x gt cos * sin^(3) x , 0 le x le 2pi .

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Solved Examples
  1. Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is mon...

    Text Solution

    |

  2. Of f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)(lambda^2-5l...

    Text Solution

    |

  3. Let f(x)=x^3+a x^2+b x+5sin^2x be an increasing function on the set Rd...

    Text Solution

    |

  4. Prove that [lim(xrarr0) (sinx.tanx)/(x^(2))]=1,where [.] represents gr...

    Text Solution

    |

  5. Using the relation 2(1−cosx)<x^2 ,x=0 or prove that sin(tanx)≥x,∀ϵ[0,...

    Text Solution

    |

  6. lf f'(x) > 0,f"(x)>0AA x in (0,1) and f(0)=0,f(1)=1,then prove that...

    Text Solution

    |

  7. Discuss the monotonocity of Q(x), where Q(x)=2f((x^2)/2)+f(6-x^2)AAx i...

    Text Solution

    |

  8. Prove that (tan^(-1)(1/e))^(2)+(2e)/(sqrt(e^(2)+1) lt (tan^(-1) e)^2 +...

    Text Solution

    |

  9. Prove that sin^2thetathetasin(sintheta)for0<thetatheta<pi

    Text Solution

    |

  10. Let f(x) = 1 + 4x - x^(2), AA x in R g(x) = max {f(t), x le t le (x ...

    Text Solution

    |

  11. Show that 5x le 8 cos x-2cos 2x le 6x for x le x le (pi)/(3)

    Text Solution

    |

  12. Let f(x),xgeq0, be a non-negative continuous function. If f^(prime)(x)...

    Text Solution

    |

  13. If a x^2+b/xgeqc for all positive x where a >0 and b >0, show that 27 ...

    Text Solution

    |

  14. Prove that for x in [0, (pi)/(2)], sin x + 2x ge (3x(x + 1))/(pi).

    Text Solution

    |

  15. Consider a curve C : y=cos^(-1)(2x-1) and a straight line L :2p x-4y+2...

    Text Solution

    |

  16. From a fixed point A on the circumference of a circle of radius r , th...

    Text Solution

    |

  17. Pa n dQ are two points on a circle of centre C and radius alpha . The ...

    Text Solution

    |

  18. The lower corner of a leaf in a book is folded over so as to reach the...

    Text Solution

    |

  19. Let A(p^2,-p),B(q^2, q),C(r^2,-r) be the vertices of triangle ABC. A p...

    Text Solution

    |

  20. A window of perimeter P (including the base of the arch) is in the ...

    Text Solution

    |