Home
Class 12
MATHS
A function y=f(x) is given by x=1/(1+t^2...

A function `y=f(x)` is given by `x=1/(1+t^2)` and `y=1/(t(1+t^2))` for all `tgt0` then `f` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given functions for \( x \) and \( y \) in terms of \( t \) and determine the behavior of the function \( f(x) \) for \( t > 0 \). ### Step-by-step Solution: 1. **Given Functions**: We have: \[ x = \frac{1}{1 + t^2} \] \[ y = \frac{1}{t(1 + t^2)} \] 2. **Differentiate \( x \) with respect to \( t \)**: We will use the quotient rule for differentiation. The quotient rule states that if \( u = 1 \) and \( v = 1 + t^2 \), then: \[ \frac{dx}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Here, \( \frac{du}{dt} = 0 \) and \( \frac{dv}{dt} = 2t \). Thus: \[ \frac{dx}{dt} = \frac{(1 + t^2)(0) - (1)(2t)}{(1 + t^2)^2} = \frac{-2t}{(1 + t^2)^2} \] 3. **Differentiate \( y \) with respect to \( t \)**: Using the quotient rule again, where \( u = 1 \) and \( v = t(1 + t^2) \): \[ \frac{dy}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Here, \( \frac{du}{dt} = 0 \) and \( \frac{dv}{dt} = 1(1 + t^2) + t(2t) = 1 + 3t^2 \). Thus: \[ \frac{dy}{dt} = \frac{t(1 + t^2)(0) - (1)(1 + 3t^2)}{(t(1 + t^2))^2} = \frac{-(1 + 3t^2)}{t^2(1 + t^2)^2} \] 4. **Find \( \frac{dy}{dx} \)**: To find \( \frac{dy}{dx} \), we use the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{-(1 + 3t^2)}{t^2(1 + t^2)^2}}{\frac{-2t}{(1 + t^2)^2}} = \frac{(1 + 3t^2)}{2t^3} \] 5. **Analyze the sign of \( \frac{dy}{dx} \)**: For \( t > 0 \): - The numerator \( (1 + 3t^2) \) is always positive. - The denominator \( 2t^3 \) is also always positive. Therefore, \( \frac{dy}{dx} > 0 \) for all \( t > 0 \). 6. **Conclusion**: Since \( \frac{dy}{dx} > 0 \) for \( t > 0 \), the function \( y = f(x) \) is a monotonically increasing function for \( t > 0 \). ### Final Answer: The function \( f(x) \) is **monotonically increasing** for \( t > 0 \).

To solve the problem, we need to analyze the given functions for \( x \) and \( y \) in terms of \( t \) and determine the behavior of the function \( f(x) \) for \( t > 0 \). ### Step-by-step Solution: 1. **Given Functions**: We have: \[ x = \frac{1}{1 + t^2} ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Discuss monotonocity of y=f(x) which is griven by x=1/(1+t^2)a n dy=1/(t(1+t^2))

Let the function y = f(x) be given by x= t^(5) -5t^(3) -20t +7 and y= 4t^(3) -3t^(2) -18t + 3 where t in ( -2,2) then f'(x) at t = 1 is

If a function y=f(x) is defined as y=(1)/(t^(2)-t-6)and t=(1)/(x-2), t in R . Then f(x) is discontinuous at

Show that the point (x ,y) given by x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2)) lies on a circle for all real values of t such that -1lt=tlt=1, where a is any given real number.

Show that the point (x ,y) given by x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2)) lies on a circle for all real values of t such that -1lt=tlt=1, where a is any given real number.

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

The function y = f(x) is defined by x=2t-|t|, y=t^2+|t|, t in R in the interval x in [-1,1] , then