Home
Class 12
MATHS
If f(x) =sin x +log(e)|sec x + tanx|-2x ...

If `f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2))` then check the monotonicity of f(x)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the monotonicity of the function \( f(x) = \sin x + \log_e |\sec x + \tan x| - 2x \) for \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we will follow these steps: ### Step 1: Differentiate the function First, we need to find the derivative \( f'(x) \). \[ f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\log_e |\sec x + \tan x|) - \frac{d}{dx}(2x) \] Calculating each derivative: - The derivative of \( \sin x \) is \( \cos x \). - For \( \log_e |\sec x + \tan x| \), we use the chain rule: \[ \frac{d}{dx}(\log_e u) = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sec x + \tan x \). The derivatives are: \[ \frac{du}{dx} = \sec x \tan x + \sec^2 x \] Therefore, \[ \frac{d}{dx}(\log_e |\sec x + \tan x|) = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} \] - The derivative of \( -2x \) is \( -2 \). Putting it all together, we have: \[ f'(x) = \cos x + \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} - 2 \] ### Step 2: Simplify the derivative We can rewrite \( f'(x) \): \[ f'(x) = \cos x - 2 + \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} \] Now, since \( \sec x = \frac{1}{\cos x} \), we can express everything in terms of \( \cos x \): \[ f'(x) = \cos x - 2 + \frac{\frac{1}{\cos x} \left(\frac{\sin x}{\cos x} + \frac{1}{\cos x}\right)}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} \] This simplifies to: \[ f'(x) = \cos x - 2 + \frac{\sin x + 1}{1 + \sin x} \] ### Step 3: Analyze the sign of the derivative To check the monotonicity, we need to analyze the sign of \( f'(x) \). 1. **Find critical points**: Set \( f'(x) = 0 \): \[ \cos x - 2 + \frac{\sin x + 1}{1 + \sin x} = 0 \] This equation is complex, but we can check specific values. 2. **Evaluate at \( x = 0 \)**: \[ f'(0) = \cos(0) - 2 + \frac{\sin(0) + 1}{1 + \sin(0)} = 1 - 2 + 1 = 0 \] 3. **Check intervals**: - For \( x < 0 \) (e.g., \( x = -\frac{\pi}{4} \)): \[ f'(-\frac{\pi}{4}) > 0 \] - For \( x > 0 \) (e.g., \( x = \frac{\pi}{4} \)): \[ f'(\frac{\pi}{4}) > 0 \] ### Conclusion Since \( f'(x) \) is positive for \( x < 0 \) and \( x > 0 \), and \( f'(0) = 0 \), we conclude that \( f(x) \) is strictly increasing in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \).

To determine the monotonicity of the function \( f(x) = \sin x + \log_e |\sec x + \tan x| - 2x \) for \( x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we will follow these steps: ### Step 1: Differentiate the function First, we need to find the derivative \( f'(x) \). \[ f'(x) = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\log_e |\sec x + \tan x|) - \frac{d}{dx}(2x) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

If f(x) =((sec x - 1)/( sec x + 1))^(1/2) , find f'((4pi)/( 3))

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Find the number of solutions to log_(e) |sin x| = -x^(2) + 2x in [-(pi)/(2), (3pi)/(2)] .

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is