Home
Class 12
MATHS
Find the interval of the monotonicity o...

Find the interval of the monotonicity of the function f(x)=`log_(e)((log_(e)x)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the interval of monotonicity of the function \( f(x) = \ln\left(\frac{\ln x}{x}\right) \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function \( f(x) \) is defined when \( \frac{\ln x}{x} > 0 \). - For \( x > 1 \), \( \ln x > 0 \) and \( x > 0 \), hence \( \frac{\ln x}{x} > 0 \). - For \( 0 < x < 1 \), \( \ln x < 0 \) and \( x > 0 \), hence \( \frac{\ln x}{x} < 0 \). Thus, the domain of \( f(x) \) is \( x \in (1, \infty) \). ### Step 2: Find the Derivative \( f'(x) \) Using the quotient rule, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \ln\left(\frac{\ln x}{x}\right) \right) = \frac{1}{\frac{\ln x}{x}} \cdot \frac{d}{dx}\left(\frac{\ln x}{x}\right) \] Now, we need to differentiate \( \frac{\ln x}{x} \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{\ln x}{x}\right) = \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2} \] Thus, substituting back, we have: \[ f'(x) = \frac{1}{\frac{\ln x}{x}} \cdot \frac{1 - \ln x}{x^2} = \frac{x(1 - \ln x)}{\ln x} \] ### Step 3: Analyze the Sign of \( f'(x) \) To find the intervals of monotonicity, we need to determine where \( f'(x) > 0 \) and \( f'(x) < 0 \). 1. **Set \( f'(x) = 0 \):** \[ x(1 - \ln x) = 0 \] This gives \( 1 - \ln x = 0 \) or \( \ln x = 1 \), which implies \( x = e \). 2. **Test intervals around \( x = e \):** - For \( x < e \): Choose \( x = 2 \) \[ f'(2) = \frac{2(1 - \ln 2)}{\ln 2} > 0 \quad (\text{since } \ln 2 < 1) \] - For \( x > e \): Choose \( x = 4 \) \[ f'(4) = \frac{4(1 - \ln 4)}{\ln 4} < 0 \quad (\text{since } \ln 4 > 1) \] ### Step 4: Conclusion on Monotonicity From the analysis: - \( f'(x) > 0 \) for \( x \in (1, e) \) (function is increasing) - \( f'(x) < 0 \) for \( x \in (e, \infty) \) (function is decreasing) Thus, the intervals of monotonicity for the function \( f(x) \) are: - Increasing on \( (1, e) \) - Decreasing on \( (e, \infty) \) ### Final Answer The function \( f(x) = \ln\left(\frac{\ln x}{x}\right) \) is increasing on the interval \( (1, e) \) and decreasing on the interval \( (e, \infty) \). ---

To find the interval of monotonicity of the function \( f(x) = \ln\left(\frac{\ln x}{x}\right) \), we will follow these steps: ### Step 1: Determine the Domain of the Function The function \( f(x) \) is defined when \( \frac{\ln x}{x} > 0 \). - For \( x > 1 \), \( \ln x > 0 \) and \( x > 0 \), hence \( \frac{\ln x}{x} > 0 \). - For \( 0 < x < 1 \), \( \ln x < 0 \) and \( x > 0 \), hence \( \frac{\ln x}{x} < 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The interval of monotonicity of the function f(x)=(x)/(log_(e)x), is

Separate the intervals of monotonocity for the function f(x)=((log)_e x)^2+((log)_e x)

Find the intervals of monotonicity of the function y=2x^2-log|x|, x!=0

The function f(x)=(log(pi+x))/(log(e+x)) s is

The function f(x)=(log(pi+x))/(log(e+x)) s is

Find the intervals of monotonicity for the following fucntions. (i) (x^(4))/(4)+(x^(3))/(3)-3x^(2)+5 " "(ii) log_(3)^(2) x+ log_(3)x

The function f(x)=(ln(pi+x))/(ln(e+x)) is

The domain of definition of the functions f(x) = log_(e)(x-[x]) , is

Find the range of the following functions. f(x)=log_(e)(3x^(2)-4x+5)

Find the domain of the following functions. f(x)=log_(e)=(2+x)/(2-x)