Home
Class 12
MATHS
Let g(x)=f(logx)+f(2-logx) and f^(prime ...

Let `g(x)=f(logx)+f(2-logx) and f^(prime prime)(x)<0AAx in (0,3)dot` Then find the interval in which `g(x)` increases.

Text Solution

AI Generated Solution

The correct Answer is:
To find the interval in which the function \( g(x) = f(\log x) + f(2 - \log x) \) increases, we need to analyze its derivative \( g'(x) \) and determine where it is greater than zero. ### Step-by-step Solution: 1. **Differentiate \( g(x) \)**: \[ g'(x) = \frac{d}{dx}[f(\log x)] + \frac{d}{dx}[f(2 - \log x)] \] Using the chain rule, we differentiate each term: \[ g'(x) = f'(\log x) \cdot \frac{1}{x} + f'(2 - \log x) \cdot \left(-\frac{1}{x}\right) \] Simplifying this gives: \[ g'(x) = \frac{1}{x} \left( f'(\log x) - f'(2 - \log x) \right) \] 2. **Set \( g'(x) > 0 \)**: For \( g(x) \) to be increasing, we need: \[ g'(x) > 0 \implies f'(\log x) - f'(2 - \log x) > 0 \] This simplifies to: \[ f'(\log x) > f'(2 - \log x) \] 3. **Analyze \( f'(x) \)**: Given that \( f''(x) < 0 \) for \( x \in (0, 3) \), we know that \( f'(x) \) is a decreasing function. This means that if \( a < b \), then \( f'(a) > f'(b) \). 4. **Set up the inequality**: From \( f'(\log x) > f'(2 - \log x) \), we can infer that: \[ \log x < 2 - \log x \] Rearranging this gives: \[ 2\log x < 2 \implies \log x < 1 \] 5. **Solve for \( x \)**: The inequality \( \log x < 1 \) implies: \[ x < e \] Therefore, \( g(x) \) is increasing for \( x \) in the interval \( (0, e) \). ### Conclusion: The function \( g(x) \) increases in the interval \( (0, e) \).

To find the interval in which the function \( g(x) = f(\log x) + f(2 - \log x) \) increases, we need to analyze its derivative \( g'(x) \) and determine where it is greater than zero. ### Step-by-step Solution: 1. **Differentiate \( g(x) \)**: \[ g'(x) = \frac{d}{dx}[f(\log x)] + \frac{d}{dx}[f(2 - \log x)] \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Solved Examples|20 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If F(x)=f(x)dotg(x) and f^(prime)(x)dotg^(prime)(x)=c , prove that (F^(primeprime))/F=f^(primeprime)/f+g^(primeprime)/g+(2c)/(fg)&F^(primeprimeprime)/F=f^(primeprimeprime)/f+g^(primeprimeprime)/g

Let g(x)=f(logx)+f(2-logx)a n df''(x)<0AAx in (0,3)dot Then find the interval in which g(x) increases.

Suppose that f(x) isa quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(prime prime)(x), then for any real x

If f(x)=(log)_(x^2)(logx) , then f^(prime)(x) at x=e is (a) 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

If f(x)=(log)_(x^2)(logx), then f^(prime)(x) at x=e is 0 (b) 1 (c) 1/e (d) 1/2e

Let f(x0 be a non-constant thrice differentiable function defined on (-oo,oo) such that f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot If n is the minimum number of roots of (f^(prime)(x)^2+f^(prime)(x)f^(x)=0 in the interval [0,6], then the value of n/2 is___

f^(prime)(x)=phi(x) and phi^(prime)(x)=f(x) for all x. Also, f(3)=5 and f^(prime)(3)=4 . Then the value of [f(10)]^2-[phi(10)]^2 is _____

If f(x) attains a local minimum at x=c , then write the values of f^(prime)(c) and f^(prime)prime(c) .

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these