Home
Class 12
MATHS
discuss the extremum of f(theta)=sin^pth...

discuss the extremum of `f(theta)=sin^pthetacos^qtheta, p , q gt0,0ltthetaltpi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To discuss the extremum of the function \( f(\theta) = \sin^p \theta \cos^q \theta \) for \( p, q > 0 \) and \( 0 < \theta < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Differentiate the Function We start by differentiating the function \( f(\theta) \) with respect to \( \theta \). \[ f(\theta) = \sin^p \theta \cos^q \theta \] Using the product rule and chain rule, we differentiate: \[ f'(\theta) = \frac{d}{d\theta}(\sin^p \theta) \cdot \cos^q \theta + \sin^p \theta \cdot \frac{d}{d\theta}(\cos^q \theta) \] Calculating each derivative separately: 1. \( \frac{d}{d\theta}(\sin^p \theta) = p \sin^{p-1} \theta \cos \theta \) 2. \( \frac{d}{d\theta}(\cos^q \theta) = -q \cos^{q-1} \theta \sin \theta \) Combining these, we get: \[ f'(\theta) = p \sin^{p-1} \theta \cos^q \theta - q \sin^p \theta \cos^{q-1} \theta \] ### Step 2: Set the Derivative to Zero To find the critical points, we set the derivative equal to zero: \[ p \sin^{p-1} \theta \cos^q \theta - q \sin^p \theta \cos^{q-1} \theta = 0 \] Rearranging gives: \[ p \sin^{p-1} \theta \cos^q \theta = q \sin^p \theta \cos^{q-1} \theta \] ### Step 3: Factor the Equation We can factor out common terms: \[ \sin^{p-1} \theta \cos^{q-1} \theta \left( p \cos \theta - q \sin \theta \right) = 0 \] This gives us two cases: 1. \( \sin^{p-1} \theta = 0 \) (which occurs at \( \theta = 0 \)) 2. \( \cos^{q-1} \theta = 0 \) (which occurs at \( \theta = \frac{\pi}{2} \)) 3. \( p \cos \theta - q \sin \theta = 0 \) ### Step 4: Solve for Critical Points From the third equation, we can solve for \( \theta \): \[ p \cos \theta = q \sin \theta \implies \tan \theta = \frac{p}{q} \] Thus, \[ \theta = \tan^{-1}\left(\frac{p}{q}\right) \] ### Step 5: Evaluate the Function at Critical Points Now we evaluate \( f(\theta) \) at the critical points: 1. At \( \theta = 0 \): \[ f(0) = \sin^p(0) \cos^q(0) = 0 \] 2. At \( \theta = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \sin^p\left(\frac{\pi}{2}\right) \cos^q\left(\frac{\pi}{2}\right) = 0 \] 3. At \( \theta = \tan^{-1}\left(\frac{p}{q}\right) \): \[ f\left(\tan^{-1}\left(\frac{p}{q}\right)\right) = \sin^p\left(\tan^{-1}\left(\frac{p}{q}\right)\right) \cos^q\left(\tan^{-1}\left(\frac{p}{q}\right)\right) \] Using the identities for sine and cosine in terms of tangent, we can express this in terms of \( p \) and \( q \). ### Step 6: Conclusion From the evaluations, we conclude that: - The function \( f(\theta) \) has a minimum value of 0 at both endpoints \( \theta = 0 \) and \( \theta = \frac{\pi}{2} \). - The maximum value occurs at \( \theta = \tan^{-1}\left(\frac{p}{q}\right) \).

To discuss the extremum of the function \( f(\theta) = \sin^p \theta \cos^q \theta \) for \( p, q > 0 \) and \( 0 < \theta < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Differentiate the Function We start by differentiating the function \( f(\theta) \) with respect to \( \theta \). \[ f(\theta) = \sin^p \theta \cos^q \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.6|9 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Discuss the extremum of f(x)={x^2+x^-2}

Discuss the extremum of f(x)=2x+3x^(2/3)

Discuss the extremum of f(x)=2x+3x^(2/3)

Discuss the extremum of f(x)=asecx+bcos e cx ,0ltaltb

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

Discuss the extremum of f(x)=x(x^2-4)^(-1/3)

Discuss the extremum of f(x)=1+2sinx+3 cos^2x ,xlt=xlt=(2pi)/3

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Discuss the extremum of f(x)={1+sinx ,x<0x^2-x+1,xgeq0a tx=0

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Concept Application Exercise 6.4
  1. Find the least value of secA+secB+secC in an acute angled triangle.

    Text Solution

    |

  2. Find the critical (stationary ) points of the function f(X)=(x^(5))/(2...

    Text Solution

    |

  3. The curve f(x)=(x^2+a x+b)/(x-10) has a stationary point at (4,1) . Fi...

    Text Solution

    |

  4. If the function f(x) =axe^(bx^(2)) has maximum value at x=2 such that ...

    Text Solution

    |

  5. Discuss the extremum of f(x)=1/3(x+1/x)

    Text Solution

    |

  6. Discuss the extremum of f(x)=1+2sinx+3 cos^2x ,xlt=xlt=(2pi)/3

    Text Solution

    |

  7. Discuss the extremum of f(x)=sinx+1/2sin2x+1/3sin3x ,0lt=xlt=pidot

    Text Solution

    |

  8. Let f(x)=-sin^3x+3sin^2x+5on[0,pi/2] . Find the local maximum and loca...

    Text Solution

    |

  9. discuss the extremum of f(theta)=sin^pthetacos^qtheta, p , q gt0,0ltth...

    Text Solution

    |

  10. Find the maximum and minimum values of the function y=(log)e(3x^4-2x^3...

    Text Solution

    |

  11. Discuss the extremum of f(x)=x(x^2-4)^(-1/3)

    Text Solution

    |

  12. Discuss the maxima and minima of the function f(x)=x^(2/3)-x^(4/3)dot ...

    Text Solution

    |

  13. Discuss the extremum of f(x)={|x^2-2|, -1lt=x<sqrt(3)x/(sqrt(3)), sqr...

    Text Solution

    |

  14. Discuss the extremum of f(x)={1+sinx ,x<0x^2-x+1,xgeq0a tx=0

    Text Solution

    |

  15. Find the minimum value of |x|+|x+1/2|+|x-3|+|x-5/2|dot

    Text Solution

    |

  16. Let f(x) be defined as f(x)={tan^(-1)alpha-5x^2,0<x<1-6x ,xgeq1 If f(...

    Text Solution

    |

  17. Let f(x)={x^3-x^2+10 x-5,xlt=1, \ -2x+(log)2(b^2-2),x >1 Find the val...

    Text Solution

    |