Home
Class 12
MATHS
Let f(x) = {{:(x^(2) + 3x",", -1 le x lt...

Let `f(x) = {{:(x^(2) + 3x",", -1 le x lt 0),(-sin x",", 0 le x lt pi//2),(-1 - cos x",", (pi)/(2) le x le pi):}` . Draw the graph of the function and find the following
(a) Range of the function
(b) Point of inflection
(c) Point of local minima

A

f(x) has global minimum value -2

B

global maximum value occurs at x=0

C

global maximum value occurs at x=`pi`

D

`x=pi//2` is point of local minima

Text Solution

Verified by Experts

The correct Answer is:
1,2,3,4


From the graph global minimum value is f(-1)=-2 and global maximum value is `f(0)=f(pi)=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|13 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercise|93 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Evaluate : int_(0)^(3) f(x) dx , where f(x)={(cos2x",",0 le x le (pi)/(2)),(3",",(pi)/(2) le x le 3):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=