Home
Class 12
MATHS
The function (sin(x+a))/(sin(x+b)) has n...

The function `(sin(x+a))/(sin(x+b))` has no maxima or minima if `b-a=npi,n in I` `b-a=(2n+1)pi,n in I` `b-a=2npi,n in I` (d) none of these

A

`b-a=npi,n in I`

B

`b-a=(2n+1)pi, n in I`

C

`b-a =2n pi, n in I`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
1,2,3

`f(x)=(sin(x+a))/(sin(x+b))`
`f(x) =(sin(x+b)cos(x+a)-sin(x+a)cos(x+b))/(sin^(2)(x+b))`
`=(sin(b-a))/(sin^(2)(x+b))`
if sin(b-a)=0 then f(x) =0 or f(x) will be a constant
i.e `b-a=npi or b-a =(2n+1)pior b-a=2npi`
Then f(x) has no minima
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|13 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercise|93 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 if (a) theta=npi,n in I Q (b) A=(2n+1)pi,n in I theta=2npi,n in I (d) none of these

General solution for |sinx|=cosx is (a) 2npi+pi/4,\ n in I (b) 2npi+-pi/4, n in 1 (c) npi+pi/4,\ n in 1 (d) none of these

If cos^2x+cos^2 2x+cos^2 3x=1 then (a) x=(2n+1)pi/4,\ n in I (b) x=(2n+1)pi/2,\ n in I (c) x=npi+-\ pi/6,\ n in I (d) none of these

Which of the following is not the general solution of 2^(cos2x)+1=3. 2^(-sin^2 x)? (a) npi,n in Z (b) (n+1/2)pi,n in Z (c) (n-1/2)pi,n in Z (d) none of these

If A=[costheta-sinthetasinthetacostheta] , then A^T+A=I_2 , if theta=npi,\ \ n in Z (b) theta=(2n+1)pi/2,\ \ n in Z (c) theta=2n\ pi+pi/3,\ \ n in Z (d) none of these

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

If 4\ cos^2theta+sqrt(3)=2(sqrt(3)+1)costheta, then theta is 2npi+-pi/3, n in I (b) 2npi+-pi/4, n in I 2npi+-\ pi/6, n in I (d) none of these

If sin^4 x+cos^4x=sinx.cosx, then x is equal to (A) npi, nepsilon I (B) (6n=1) pi/6, n epsilon I (C) (4n+1) pi/4, n epsilon I (D) none of these

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}