Home
Class 12
MATHS
Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+...

Let f(x) =`x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2`
The values of parameter a if f(x) has a positive point of local maxima are

A

`pi`

B

`-oo,-3cup(3,(29)/(7))`

C

`-oo,(58)/(14)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of the parameter \( a \) for which the function \( f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2 \) has a positive point of local maxima, we will follow these steps: ### Step 1: Differentiate the Function First, we need to find the first derivative of the function \( f(x) \) to locate the critical points. \[ f'(x) = \frac{d}{dx}(x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2) \] Using the power rule for differentiation, we get: \[ f'(x) = 3x^2 - 6(7-a)x - 3(9-a^2) \] ### Step 2: Set the First Derivative to Zero To find the critical points, we set the first derivative equal to zero: \[ 3x^2 - 6(7-a)x - 3(9-a^2) = 0 \] Dividing the entire equation by 3 simplifies it to: \[ x^2 - 2(7-a)x - (9-a^2) = 0 \] ### Step 3: Apply the Condition for Local Maxima For \( f(x) \) to have a local maximum at a critical point, the discriminant of the quadratic equation must be greater than zero (indicating two distinct real roots): \[ D = b^2 - 4ac > 0 \] Here, \( a = 1 \), \( b = -2(7-a) \), and \( c = -(9-a^2) \). Calculating the discriminant: \[ D = [-2(7-a)]^2 - 4(1)(-(9-a^2)) \] \[ D = 4(7-a)^2 + 4(9-a^2) \] \[ D = 4[(7-a)^2 + (9-a^2)] \] ### Step 4: Simplify the Discriminant Now we simplify the expression inside the brackets: \[ (7-a)^2 = 49 - 14a + a^2 \] Thus, \[ D = 4[49 - 14a + a^2 + 9 - a^2] = 4[58 - 14a] \] Setting the discriminant greater than zero gives: \[ 4(58 - 14a) > 0 \] \[ 58 - 14a > 0 \] \[ 14a < 58 \implies a < \frac{58}{14} = \frac{29}{7} \] ### Step 5: Check for Positive Critical Points Next, we need to ensure that the critical points are positive. We will use the quadratic formula to find the roots: \[ x = \frac{-b \pm \sqrt{D}}{2a} = \frac{2(7-a) \pm 2\sqrt{58 - 14a}}{2} \] \[ x = (7-a) \pm \sqrt{58 - 14a} \] For \( x \) to be positive, we need: \[ (7-a) - \sqrt{58 - 14a} > 0 \] This simplifies to: \[ 7 - a > \sqrt{58 - 14a} \] ### Step 6: Square Both Sides Squaring both sides (noting that both sides are positive): \[ (7 - a)^2 > 58 - 14a \] Expanding gives: \[ 49 - 14a + a^2 > 58 - 14a \] \[ 49 > 58 \implies \text{This is always true.} \] ### Conclusion Thus, the only condition we have is \( a < \frac{29}{7} \). However, we also need to ensure that \( a \) does not lead to negative critical points. From the analysis, we find that \( a \) must also satisfy: \[ a < 10/9 \] ### Final Result The values of \( a \) for which \( f(x) \) has a positive point of local maxima are: \[ a < \frac{10}{9} \]

To determine the values of the parameter \( a \) for which the function \( f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2 \) has a positive point of local maxima, we will follow these steps: ### Step 1: Differentiate the Function First, we need to find the first derivative of the function \( f(x) \) to locate the critical points. \[ f'(x) = \frac{d}{dx}(x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2) \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a if f(x) has a negative point of local minimum are

Let f(x) = x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2 The values of parameter a if f(x) has points of extrema which are opposite in sign are

Let f(x) be a cubic polynomial defined by f(x)=x^(3)/(3)+(a-3)x^(2)+x-13. Then the sum of all possible values(s) of a for which f(x) has negative point of local minimum in the interval [ 1,5] is

Let f(x) = 2x^3 + 3(1-3a)x^2 + 6(a^2-a)x +b where a, b in R . Find the smallest integral value of a for which f(x) has a positive point of local maximum.

Draw graph of f(x) =x|x-2| and hence find points of local maxima // minima.

Let f(x) =x^(2) , x in (-1,2) Then show that f(x) has exactly one point of local minima but global maximum Is not defined.

Let f(x)=x^3-3x^2+2x Find f'(x)

The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a , if

Let f(x)=((x-3)(x+2)(x+5))/((x+1)(x-7)) . Find the intervals were f(x) is positive or negative .

Let f(x) =x^(3) -x^(2) -x-4 (i) find the possible points of maxima // minima of f(x) x in R (ii) Find the number of critical points of f(x) x in [1,3] (iii) Discuss absolute (global) maxima // minima value of f(x) for x in [-2,2] (iv) Prove that for x in (1,3) the function does not has a Global maximum.

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Linked comprehension type
  1. Let f(x) = 4x^(2)-4ax+a^(2)-2a+2 and the golbal minimum value of f(x) ...

    Text Solution

    |

  2. Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  3. Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  4. Let f(x) =x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  5. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  6. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  7. consider the function f(x) =(1+(1/x))^(x) The range of the function ...

    Text Solution

    |

  8. consider the function f(X) =x+cosx which of the following is not tru...

    Text Solution

    |

  9. consider the function f(X) =x+cosx -a values of a which f(X) =0 has ...

    Text Solution

    |

  10. consider the function f(X) =x+cosx -a values of a for which f(X) =0 ...

    Text Solution

    |

  11. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) Y= f(X) increase i...

    Text Solution

    |

  12. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of the f...

    Text Solution

    |

  13. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of value...

    Text Solution

    |

  14. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) f(x)...

    Text Solution

    |

  15. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) whic...

    Text Solution

    |

  16. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) Rang...

    Text Solution

    |

  17. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  18. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  19. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  20. Let f(X) be real valued continous funcion on R defined as f(X) =x^(2)e...

    Text Solution

    |