Home
Class 12
MATHS
Let f(x) =x^(3)-3(7-a)x^(2)-3(9-a^(2))x+...

Let f(x) =`x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2`
The values of parameter a if f(x) has points of extrema which are opposite in sign are

A

`pi`

B

(-3,3)

C

`(-oo,(58)/(14))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2 \) and find the values of the parameter \( a \) such that the points of extrema of \( f(x) \) have opposite signs. ### Step 1: Find the derivative of \( f(x) \) First, we differentiate \( f(x) \) to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(x^3) - \frac{d}{dx}(3(7-a)x^2) - \frac{d}{dx}(3(9-a^2)x) + \frac{d}{dx}(2) \] Calculating each term: \[ f'(x) = 3x^2 - 6(7-a)x - 3(9-a^2) \] Thus, we have: \[ f'(x) = 3x^2 - 6(7-a)x - 3(9-a^2) \] ### Step 2: Set the derivative equal to zero To find the points of extrema, we set \( f'(x) = 0 \): \[ 3x^2 - 6(7-a)x - 3(9-a^2) = 0 \] Dividing the entire equation by 3 simplifies it to: \[ x^2 - 2(7-a)x - (9-a^2) = 0 \] ### Step 3: Calculate the discriminant For the quadratic equation \( Ax^2 + Bx + C = 0 \), the discriminant \( D \) is given by \( D = B^2 - 4AC \). Here, \( A = 1 \), \( B = -2(7-a) \), and \( C = -(9-a^2) \). Calculating the discriminant: \[ D = [-2(7-a)]^2 - 4(1)(-(9-a^2)) \] \[ D = 4(7-a)^2 + 4(9-a^2) \] Factoring out the 4: \[ D = 4[(7-a)^2 + (9-a^2)] \] ### Step 4: Set the discriminant greater than zero For the quadratic to have real roots (extrema), we need \( D \geq 0 \): \[ (7-a)^2 + (9-a^2) \geq 0 \] ### Step 5: Analyze the condition for opposite signs To have extrema with opposite signs, we need to analyze the conditions on the roots of the quadratic: 1. The sum of the roots \( r_1 + r_2 = -\frac{B}{A} = 2(7-a) \) should be positive. 2. The product of the roots \( r_1 r_2 = \frac{C}{A} = -(9-a^2) \) should be negative. #### Condition 1: Sum of roots \[ 2(7-a) > 0 \implies 7-a > 0 \implies a < 7 \] #### Condition 2: Product of roots \[ -(9-a^2) < 0 \implies 9-a^2 > 0 \implies a^2 < 9 \implies -3 < a < 3 \] ### Step 6: Combine the conditions From the conditions derived: 1. \( a < 7 \) 2. \( -3 < a < 3 \) The intersection of these intervals gives us: \[ -3 < a < 3 \] ### Conclusion Thus, the values of the parameter \( a \) for which the function \( f(x) \) has points of extrema that are opposite in sign are: \[ \boxed{(-3, 3)} \]

To solve the problem, we need to analyze the function \( f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2 \) and find the values of the parameter \( a \) such that the points of extrema of \( f(x) \) have opposite signs. ### Step 1: Find the derivative of \( f(x) \) First, we differentiate \( f(x) \) to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(x^3) - \frac{d}{dx}(3(7-a)x^2) - \frac{d}{dx}(3(9-a^2)x) + \frac{d}{dx}(2) ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a if f(x) has a negative point of local minimum are

Let f(x) = x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a if f(x) has a positive point of local maxima are

Let f(x)=x^3-3x^2+2x Find f'(x)

Let f(x)=(x^2+3x+a)/(x^2+x+1) where f:R->R . Find the value of parameter a' so that the given function is one-one

consider the function f(X) = 3x^(4)+4x^(3)-12x^(2) The range of values of a for which f(x) = a has no real

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

Let f(x)=(3x-7)x^(2/3) . The interval in which f(x) is increasing.

Draw the graph of f(x) =y= |x-1|+3|x-2|-5|x-4| and find the values of lamda for which the equation f(x) = lamda has roots of opposite sign.

f(x)=3x^4+2x^3-(x^2)/3-x/9+2/(27),\ g(x)=\ x+2/3 find the value of f(x)-g(x).

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Linked comprehension type
  1. Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  2. Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  3. Let f(x) =x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  4. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  5. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  6. consider the function f(x) =(1+(1/x))^(x) The range of the function ...

    Text Solution

    |

  7. consider the function f(X) =x+cosx which of the following is not tru...

    Text Solution

    |

  8. consider the function f(X) =x+cosx -a values of a which f(X) =0 has ...

    Text Solution

    |

  9. consider the function f(X) =x+cosx -a values of a for which f(X) =0 ...

    Text Solution

    |

  10. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) Y= f(X) increase i...

    Text Solution

    |

  11. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of the f...

    Text Solution

    |

  12. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of value...

    Text Solution

    |

  13. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) f(x)...

    Text Solution

    |

  14. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) whic...

    Text Solution

    |

  15. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) Rang...

    Text Solution

    |

  16. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  17. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  18. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  19. Let f(X) be real valued continous funcion on R defined as f(X) =x^(2)e...

    Text Solution

    |

  20. Let f(x) be real valued continous funcion on R defined as f(x) =x^(2)e...

    Text Solution

    |