Home
Class 12
MATHS
consider the function f(x) =1(1+(1)/(x))...

consider the function f(x) =`1(1+(1)/(x))^(x)`
The domain of f(x) is

A

`(-1,0)cup(0,oo)`

B

R-{0}

C

`(-oo,-1)cup(0,oo)cup(0,oo)`

D

(0,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = 1 \cdot \left( 1 + \frac{1}{x} \right)^x \), we need to ensure that the expression inside the function is defined and valid. ### Step-by-step Solution: 1. **Identify the function**: We start with the function given: \[ f(x) = \left( 1 + \frac{1}{x} \right)^x \] 2. **Determine the conditions for the function to be defined**: The term \( \frac{1}{x} \) implies that \( x \) cannot be zero, as division by zero is undefined. Therefore, we have: \[ x \neq 0 \] 3. **Analyze the term \( 1 + \frac{1}{x} \)**: Next, we need to ensure that \( 1 + \frac{1}{x} > 0 \). This will help us understand the behavior of the function: \[ 1 + \frac{1}{x} > 0 \] Rearranging this gives: \[ \frac{1}{x} > -1 \] This can be rewritten as: \[ 1 > -x \quad \text{or} \quad x > -1 \] 4. **Combine the conditions**: From the conditions derived, we have: - \( x \neq 0 \) - \( x > -1 \) The critical points to consider are \( x = -1 \) and \( x = 0 \). 5. **Test intervals**: We will test the intervals determined by these critical points: - For \( x < -1 \): Choose \( x = -2 \): \[ 1 + \frac{1}{-2} = 1 - 0.5 = 0.5 > 0 \quad \text{(valid)} \] - For \( -1 < x < 0 \): Choose \( x = -0.5 \): \[ 1 + \frac{1}{-0.5} = 1 - 2 = -1 < 0 \quad \text{(invalid)} \] - For \( x > 0 \): Choose \( x = 1 \): \[ 1 + \frac{1}{1} = 2 > 0 \quad \text{(valid)} \] 6. **Conclusion**: The valid intervals where the function is defined are: - From \( -\infty \) to \( -1 \) (excluding -1) - From \( 0 \) to \( +\infty \) (excluding 0) Thus, the domain of the function \( f(x) \) is: \[ (-\infty, -1) \cup (0, +\infty) \]

To find the domain of the function \( f(x) = 1 \cdot \left( 1 + \frac{1}{x} \right)^x \), we need to ensure that the expression inside the function is defined and valid. ### Step-by-step Solution: 1. **Identify the function**: We start with the function given: \[ f(x) = \left( 1 + \frac{1}{x} \right)^x ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x) = |x^(3) + 1| . Then,

If a function satisfies the condition f(x+1/x)=x^(2)+1/(x^(2)),xne0 , then domain of f(x) is

If f(x)=(a-x)/(a+x) , the domain of f^(-1)(x) contains

consider the function f(x)=(x^(2))/(x^(2)-1) If f is defined from R-(-1,1)rarrR then f is

If f(x)=(sqrt(x-1))/(x) , what is the domain of f(x) ?

If f(x)=(1)/(sqrt(x)) , what is the domain of f(x)?

Domain of the function f(x)=(1)/(log(2-x)) is

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :

Consider the function f(x)=(.^(x+1)C_(2x-8))(.^(2x-8)C_(x+1)) Statement-1: Domain of f(x) is singleton. Statement 2: Range of f(x) is singleton.

Consider the function f:R -{1} given by f (x)= (2x)/(x-1) Then f^(-1)(x) =

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Linked comprehension type
  1. Let f(x) =x^(3)-3(7-a)X^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  2. Let f(x) =x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2 The values of parameter a ...

    Text Solution

    |

  3. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  4. consider the function f(x) =1(1+(1)/(x))^(x) The domain of f(x) is

    Text Solution

    |

  5. consider the function f(x) =(1+(1/x))^(x) The range of the function ...

    Text Solution

    |

  6. consider the function f(X) =x+cosx which of the following is not tru...

    Text Solution

    |

  7. consider the function f(X) =x+cosx -a values of a which f(X) =0 has ...

    Text Solution

    |

  8. consider the function f(X) =x+cosx -a values of a for which f(X) =0 ...

    Text Solution

    |

  9. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) Y= f(X) increase i...

    Text Solution

    |

  10. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of the f...

    Text Solution

    |

  11. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of value...

    Text Solution

    |

  12. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) f(x)...

    Text Solution

    |

  13. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) whic...

    Text Solution

    |

  14. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) Rang...

    Text Solution

    |

  15. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  16. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  17. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  18. Let f(X) be real valued continous funcion on R defined as f(X) =x^(2)e...

    Text Solution

    |

  19. Let f(x) be real valued continous funcion on R defined as f(x) =x^(2)e...

    Text Solution

    |

  20. Let f(x) be real valued continous funcion on R defined as f(x) =x^(2)e...

    Text Solution

    |