Home
Class 12
MATHS
Let f(x) be real valued continous funcio...

Let `f(x) `be real valued continous funcion on R defined as `f(x)` =`x^(2)e^(-|x|)`
Number of points of inflection for `y = f(x)` is (a) 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of points of inflection for the function \( f(x) = x^2 e^{-|x|} \), we will follow these steps: ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} x^2 e^{-x} & \text{if } x \geq 0 \\ x^2 e^{x} & \text{if } x < 0 \end{cases} \] ### Step 2: Find the first derivative \( f'(x) \) We will differentiate \( f(x) \) for both cases using the product rule. For \( x \geq 0 \): \[ f'(x) = \frac{d}{dx}(x^2) \cdot e^{-x} + x^2 \cdot \frac{d}{dx}(e^{-x}) = 2x e^{-x} - x^2 e^{-x} = e^{-x}(2x - x^2) \] For \( x < 0 \): \[ f'(x) = \frac{d}{dx}(x^2) \cdot e^{x} + x^2 \cdot \frac{d}{dx}(e^{x}) = 2x e^{x} + x^2 e^{x} = e^{x}(x^2 + 2x) \] ### Step 3: Find the second derivative \( f''(x) \) Now we differentiate \( f'(x) \) to find \( f''(x) \). For \( x \geq 0 \): \[ f''(x) = \frac{d}{dx}(e^{-x}(2x - x^2)) = e^{-x}(2 - 2x) + e^{-x}(2x - x^2)(-1) = e^{-x}((2 - 2x) - (2x - x^2)) = e^{-x}(x^2 - 4x + 2) \] For \( x < 0 \): \[ f''(x) = \frac{d}{dx}(e^{x}(x^2 + 2x)) = e^{x}(x^2 + 2x) + e^{x}(2x + 2) = e^{x}(x^2 + 4x + 2) \] ### Step 4: Set the second derivative to zero To find points of inflection, we set \( f''(x) = 0 \). For \( x \geq 0 \): \[ e^{-x}(x^2 - 4x + 2) = 0 \implies x^2 - 4x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} = 2 \pm \sqrt{2} \] For \( x < 0 \): \[ e^{x}(x^2 + 4x + 2) = 0 \implies x^2 + 4x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{-4 \pm \sqrt{16 - 8}}{2} = \frac{-4 \pm 2\sqrt{2}}{2} = -2 \pm \sqrt{2} \] ### Step 5: Count the points of inflection From the calculations: - For \( x \geq 0 \), we have two points of inflection: \( 2 + \sqrt{2} \) and \( 2 - \sqrt{2} \). - For \( x < 0 \), we have two points of inflection: \( -2 + \sqrt{2} \) and \( -2 - \sqrt{2} \). ### Conclusion Thus, the total number of points of inflection is \( 2 + 2 = 4 \). The answer is (d) 4. ---

To find the number of points of inflection for the function \( f(x) = x^2 e^{-|x|} \), we will follow these steps: ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} x^2 e^{-x} & \text{if } x \geq 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be real valued continuous function on R defined as f(x)=x^(2)e^(-|x|) then f(x) is increasing in

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Find the points of inflection for (a) f(x)=sinx (b) f(x)=3x^4-4x^3

Find the points of inflection for f(x)=sinx f(x)=3x^4-4x^3 f(x)=x^(1/3)

Let be a real valued function defined by f(x) =e +e^x , then the range of f(x) is :

Let D be the domain of the real valued function f defined by f(x)=sqrt(25-x^(2)) . Then, write D.

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Linked comprehension type
  1. consider the function f(X) =x+cosx which of the following is not tru...

    Text Solution

    |

  2. consider the function f(X) =x+cosx -a values of a which f(X) =0 has ...

    Text Solution

    |

  3. consider the function f(X) =x+cosx -a values of a for which f(X) =0 ...

    Text Solution

    |

  4. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) Y= f(X) increase i...

    Text Solution

    |

  5. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of the f...

    Text Solution

    |

  6. consider the function f(X) =3x^(4)+4x^(3)-12x^(2) The range of value...

    Text Solution

    |

  7. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) f(x)...

    Text Solution

    |

  8. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) whic...

    Text Solution

    |

  9. consider the function f:R rarr R,f(x)=(x^(2)-6x+4)/(x^(2)+2x+4) Rang...

    Text Solution

    |

  10. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  11. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  12. Consider a polynomial y = P(x) of the least degree passing through A(-...

    Text Solution

    |

  13. Let f(X) be real valued continous funcion on R defined as f(X) =x^(2)e...

    Text Solution

    |

  14. Let f(x) be real valued continous funcion on R defined as f(x) =x^(2)e...

    Text Solution

    |

  15. Let f(x) be real valued continous funcion on R defined as f(x) =x^(2)e...

    Text Solution

    |

  16. P(x) be a polynomial of degree 3 satisfying P(-1) =10 , P(1) =-6 and p...

    Text Solution

    |

  17. P(x) be a polynomial of degree 3 satisfying P(-1) =10 , P(1) =-6 and p...

    Text Solution

    |

  18. The graph of y =g(x) =f(X) is as shown in the following figure analyse...

    Text Solution

    |

  19. The graph of y =g(x) =f(X) is as shown in the following figure analyse...

    Text Solution

    |

  20. The graph of y =g(x) =f(X) is as shown in the following figure analyse...

    Text Solution

    |