Home
Class 12
MATHS
Let f:""R vec R be defined by f(x)={k-2x...

Let `f:""R vec R` be defined by `f(x)={k-2x , if""xlt=-1 (-2x+3),x >-1}` . If f has a local minimum at `x=-1` , then a possible value of k is (1) 0 (2) `-1/2` (3) `-1` (4) 1

A

-1

B

1

C

0

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
1

`f(X)={{:(k-2x, if xle-1),(2x+3,if xgt-1):}`
For minima at x=-1 we must have
`underset(xrarr-1)limf(x)leunderset(xrarr1^(+))limf(x)`
`rarr k+2le1`
`rarr kle-1`
`rarrk=-1`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|50 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f:""RrarrR be defined by f(x)={(k-2x , if xle-1),( 2x+3, if x gt-1):} . If f has a local minimum at x""=""1 , then a possible value of k is (1) 0 (2) -1/2 (3) -1 (4) 1

Let f : R to R be defined by if f(x)= {underset((2x + 3 " ", " "if" "x gt -1) (k-2x" "," "if" "x le -1)). if f has a local minimum at x=-1 then a possible value of k is

let f(x)=(x^2-1)^n (x^2+x-1) then f(x) has local minimum at x=1 when

Let f: R->R be defined as f(x)=(2x-3)/4 . Write fof^(-1)(1) .

Let f: R->R be defined as f(x)=x^2+1 . Find: f^(-1)(10)

Let f: R->R^+ be defined by f(x)=a^x ,\ a >0 and a!=1 . Write f^(-1)(x) .

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .

If f(x)={3+|x-k|,xlt=k a^2-2+(s n(x-k))/(x-k),x > k has minimum at x=k , then a in R b. |a| 2 d. 1<|a|<2

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2