Home
Class 12
MATHS
If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,,...

If `f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}|`, then

A

f'(x) =0 at exactly three points in `(-pi,pi)`

B

f(x) attains its maximum at x=0

C

f(x) attains its minimum at x=0

D

f'(x) =0 at more than three points in `(-pi,pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(x) \) and analyze its properties, particularly focusing on its critical points and whether it attains maximum or minimum values. ### Step 1: Write down the determinant The function is defined as: \[ f(x) = \begin{vmatrix} \cos(2x) & \cos(2x) & \sin(2x) \\ -\cos(x) & \cos(x) & -\sin(x) \\ \sin(x) & \sin(x) & \cos(x) \end{vmatrix} \] ### Step 2: Simplify the determinant We can simplify the determinant using the property of determinants. We will perform the operation \( C_2 \leftarrow C_2 - C_1 \): \[ f(x) = \begin{vmatrix} \cos(2x) & 0 & \sin(2x) \\ -\cos(x) & 2\cos(x) & -\sin(x) \\ \sin(x) & 0 & \cos(x) \end{vmatrix} \] ### Step 3: Expand the determinant Now we can expand the determinant along the second column: \[ f(x) = 2\cos(x) \cdot \begin{vmatrix} \cos(2x) & \sin(2x) \\ \sin(x) & \cos(x) \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} \cos(2x) & \sin(2x) \\ \sin(x) & \cos(x) \end{vmatrix} = \cos(2x) \cos(x) - \sin(2x) \sin(x) = \cos(2x + x) = \cos(3x) \] Thus, \[ f(x) = 2\cos(x) \cos(3x) \] ### Step 4: Find the derivative Now we need to find the derivative \( f'(x) \): Using the product rule: \[ f'(x) = 2\left(-\sin(x) \cos(3x) + \cos(x)(-3\sin(3x))\right) \] This simplifies to: \[ f'(x) = -2\sin(x)\cos(3x) - 6\cos(x)\sin(3x) \] ### Step 5: Set the derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ -2\sin(x)\cos(3x) - 6\cos(x)\sin(3x) = 0 \] Factoring out common terms: \[ -2\left(\sin(x)\cos(3x) + 3\cos(x)\sin(3x)\right) = 0 \] This gives us two cases: 1. \( \sin(x) = 0 \) 2. \( \sin(3x + x) = 0 \) ### Step 6: Solve for critical points 1. From \( \sin(x) = 0 \): - \( x = n\pi \) for \( n \in \mathbb{Z} \) - In the interval \( (-\pi, \pi) \), we have \( x = 0 \). 2. From \( \sin(4x) = 0 \): - \( 4x = n\pi \) implies \( x = \frac{n\pi}{4} \) - In the interval \( (-\pi, \pi) \), we have \( x = -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{\pi}{2}, -\frac{\pi}{2} \). ### Step 7: Analyze maximum and minimum To determine whether \( x = 0 \) is a maximum or minimum, we compute the second derivative: \[ f''(x) = -2\left(\cos(x)\cos(3x) - 3\sin(x)\sin(3x)\right) \] Evaluating at \( x = 0 \): \[ f''(0) = -2\left(1 \cdot 1 - 0\right) = -2 < 0 \] Since \( f''(0) < 0 \), \( x = 0 \) is a point of local maximum. ### Conclusion Thus, the function \( f(x) \) attains its maximum at \( x = 0 \) and \( f'(x) = 0 \) at exactly three points in the interval \( (-\pi, \pi) \).

To solve the problem, we need to evaluate the determinant given by the function \( f(x) \) and analyze its properties, particularly focusing on its critical points and whether it attains maximum or minimum values. ### Step 1: Write down the determinant The function is defined as: \[ f(x) = \begin{vmatrix} \cos(2x) & \cos(2x) & \sin(2x) \\ -\cos(x) & \cos(x) & -\sin(x) \\ ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|13 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercise|93 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

If f(x) = \begin{vmatrix} cos2x & cos2x & sin2x \\ -cosx & cosx & -sinx\\ sinx & sinx & cosx \end{vmatrix} then

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

Solve |cos x - 2 sin 2x - cos 3 x|=1-2 sin x - cos 2x .

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

Show that '(1-cos 2x + sin x)/(sin 2x + cos x) = tan x'

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Multiple correct answers type
  1. For the function f(x)=(e^x)/(1+e^x), which of the following hold good?...

    Text Solution

    |

  2. Which of the following is true about point of extremum x=a of function...

    Text Solution

    |

  3. Which of the following function has point of extremum at x=0? f(x)=e...

    Text Solution

    |

  4. Which of the following function/functions has/have point of inflection...

    Text Solution

    |

  5. The function f(x)=x^2+lambda/x has a minimum at x=2iflambda=16 maximu...

    Text Solution

    |

  6. The function f(x)=x^(1/3)(x-1) has two inflection points has one poin...

    Text Solution

    |

  7. Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then (a) f(x) is an inc...

    Text Solution

    |

  8. Consider the function f(x)=xcosx-sinxdot Then identify the statement w...

    Text Solution

    |

  9. If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then

    Text Solution

    |

  10. Find the greatest value of f(x)=(1)/(2ax-x^(2)-5a^(2)) in [-3, 5] depe...

    Text Solution

    |

  11. For any acute angled triangleABC,(sinA)/(A)+(sinB)/(B)+(sinC)/(C ) can

    Text Solution

    |

  12. Let f(x) be a non negative continuous and bounded function for all xge...

    Text Solution

    |

  13. A rectangular sheet of fixed perimeter with sides having their lengths...

    Text Solution

    |

  14. The function f(x)=2|x|+|x+2|=||x|2|-2|x|| has a local minimum or a loc...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let a in R and let f: Rvec be given by f(x)=x^5-5x+a , then (a) f(x...

    Text Solution

    |

  17. Let f:Rrarr(0,oo)andg:RrarrR be twice differentiable functions such th...

    Text Solution

    |

  18. If f:RR-> RR is a differentiable function such that f(x) > 2f(x) f...

    Text Solution

    |

  19. If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx...

    Text Solution

    |

  20. Let f:(0,pi) rarr R be a twice differentiable function such that lim(t...

    Text Solution

    |