Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. )a) `1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` (b) `1n((sqrt(3)+sqrt(7))/2)` (c) `1n((sqrt(7)-sqrt(3))/2)` (d) `+-1n((sqrt(3)+sqrt(7))/2)`

A

`ln((sqrt3+sqrt7)/(7))and ln((sqrt3+sqrt5)/(2))`

B

`((sqrt3+sqrt7)/(2))`

C

`ln((sqrt7-sqrt3)/(2))`

D

`+-ln((sqrt3+sqrt7)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the abscissas of points \( P \) and \( Q \) on the curve \( y = e^x + e^{-x} \) such that the tangents at these points make an angle of \( 60^\circ \) with the x-axis, we will follow these steps: ### Step 1: Determine the slope of the tangent line The slope \( m \) of the tangent line at a point on the curve can be found using the derivative of the function. The angle \( \theta \) that the tangent makes with the x-axis is given as \( 60^\circ \). Therefore, the slope of the tangent line is: \[ m = \tan(60^\circ) = \sqrt{3} \] ### Step 2: Find the derivative of the function To find the slope of the tangent line at any point on the curve, we need to differentiate the function \( y = e^x + e^{-x} \): \[ \frac{dy}{dx} = e^x - e^{-x} \] ### Step 3: Set the derivative equal to the slope We set the derivative equal to the slope we found in Step 1: \[ e^x - e^{-x} = \sqrt{3} \] ### Step 4: Multiply through by \( e^x \) To eliminate the negative exponent, we multiply both sides by \( e^x \): \[ (e^x)^2 - \sqrt{3} e^x - 1 = 0 \] Let \( t = e^x \). Then the equation becomes: \[ t^2 - \sqrt{3} t - 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{\sqrt{3} \pm \sqrt{(\sqrt{3})^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ t = \frac{\sqrt{3} \pm \sqrt{3 + 4}}{2} \] \[ t = \frac{\sqrt{3} \pm \sqrt{7}}{2} \] ### Step 6: Convert back to \( x \) Since \( t = e^x \), we have: \[ e^x = \frac{\sqrt{3} + \sqrt{7}}{2} \quad \text{and} \quad e^x = \frac{\sqrt{3} - \sqrt{7}}{2} \] Taking the natural logarithm of both sides gives us: \[ x = \ln\left(\frac{\sqrt{3} + \sqrt{7}}{2}\right) \quad \text{and} \quad x = \ln\left(\frac{\sqrt{3} - \sqrt{7}}{2}\right) \] ### Step 7: Determine valid solutions Since \( \sqrt{7} > \sqrt{3} \), the term \( \frac{\sqrt{3} - \sqrt{7}}{2} \) is negative, and we discard it because the logarithm of a negative number is undefined. Thus, the valid abscissa is: \[ x = \ln\left(\frac{\sqrt{3} + \sqrt{7}}{2}\right) \] ### Final Answer The abscissas of points \( P \) and \( Q \) are: \[ x = \ln\left(\frac{\sqrt{3} + \sqrt{7}}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|16 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|8 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 5.8|9 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tangents at Pa n dQ make 60^0 with the x-axis are. 1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2) 1n((sqrt(3)+sqrt(7))/2) (c) 1n((sqrt(7)-sqrt(3))/2) +-1n((sqrt(3)+sqrt(7))/2)

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

1/(sqrt(7)+sqrt(3))\times (sqrt(7)-sqrt(3))/(sqrt(7)-sqrt(3))

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

The sum n terms of the series 1/(sqrt(1)+sqrt(3))+1/(sqrt(3)+sqrt(5))+1/(sqrt(5)+sqrt(7))+ is sqrt(2n+1) (b) 1/2sqrt(2n+1) (c) 1/2sqrt(2n+1)-1 (d) 1/2{sqrt(2n+1)-1}

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Show that: 1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7))+1/(sqrt(7)-sqrt(6))-1/(sqrt(6)-sqrt(5))+1/(sqrt(5)-2)=5

CENGAGE ENGLISH-APPLICATION OF DERIVATIVES-EXERCISES
  1. If x+4y=14 is a normal to the curve y^2=alphax^3-beta at (2,3), then t...

    Text Solution

    |

  2. In the curve represented parametrically by the equations x=2ln cott+1 ...

    Text Solution

    |

  3. The abscissas of point Pa n dQ on the curve y=e^x+e^(-x) such that tan...

    Text Solution

    |

  4. If a variable tangent to the curve x^2y=c^3 makes intercepts a , bonx-...

    Text Solution

    |

  5. Let C be the curve y=x^3 (where x takes all real values). The tangent ...

    Text Solution

    |

  6. The equation of the line tangent to the curve x siny + ysinx = pi at t...

    Text Solution

    |

  7. The x-intercept of the tangent at any arbitrary point of the curve a/(...

    Text Solution

    |

  8. At any point on the curve 2x^2y^2-x^4=c , the mean proportional betwee...

    Text Solution

    |

  9. Given g(x) (x+2)/(x-1) and the line 3x+y-10=0. Then the line is

    Text Solution

    |

  10. If the length of sub-normal is equal to the length of sub-tangent at ...

    Text Solution

    |

  11. The number of point in the rectangle {(x , y)}-12lt=xlt=12a n d-3lt=yl...

    Text Solution

    |

  12. Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) ...

    Text Solution

    |

  13. The line tangent to the curves y^3-x^2y+5y-2x=0 and x^2-x^3y^2+5x+2y=0...

    Text Solution

    |

  14. The two curves x=y^2,x y=a^3 cut orthogonally at a point. Then a^2 is ...

    Text Solution

    |

  15. The tangent to the curve y = e ^(kx) at a point (0,1) meets the x-axis...

    Text Solution

    |

  16. The curves 4x^2+9y^2=72 and x^2-y^2=5a t(3,2) Then (a) touch each oth...

    Text Solution

    |

  17. The coordinates of a point on the parabola y^2=8x whose distance from ...

    Text Solution

    |

  18. At the point P(a,a^(n)) on the graph of y=x^(n)(n in N) in the first q...

    Text Solution

    |

  19. Let f be a continuous, differentiable, and bijective function. If the ...

    Text Solution

    |

  20. A point on the parabola y^2=18 x at which the ordinate increases at tw...

    Text Solution

    |