Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot` A normal to `y=f(x)` at `x=pi/6` also passes through the point: (1) (0, 0) (2) `(0,(2pi)/3)` (3) `(pi/6,0)` (4) `(pi/4,0)`

A

`(0,(2pi)/(3))`

B

`((pi)/(6)0,)`

C

`((pi)/(4),0)`

D

`(0,0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the equation of the normal to the curve \( y = f(x) \) at \( x = \frac{\pi}{6} \) and determine which of the given points lies on this normal line. ### Step 1: Define the function We start with the function: \[ f(x) = \tan^{-1}\left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right) \] ### Step 2: Find \( f\left(\frac{\pi}{6}\right) \) First, we need to evaluate \( f\left(\frac{\pi}{6}\right) \): \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] So, \[ f\left(\frac{\pi}{6}\right) = \tan^{-1}\left(\sqrt{\frac{1 + \frac{1}{2}}{1 - \frac{1}{2}}}\right) = \tan^{-1}\left(\sqrt{\frac{\frac{3}{2}}{\frac{1}{2}}}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] Thus, the point on the curve at \( x = \frac{\pi}{6} \) is \( \left(\frac{\pi}{6}, \frac{\pi}{3}\right) \). ### Step 3: Find \( f'(x) \) Next, we differentiate \( f(x) \): Using the chain rule: \[ f'(x) = \frac{1}{1 + \left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right)^2} \cdot \frac{d}{dx}\left(\sqrt{\frac{1 + \sin x}{1 - \sin x}}\right) \] Calculating the derivative of the inside function using the quotient rule: Let \( u = 1 + \sin x \) and \( v = 1 - \sin x \): \[ \frac{d}{dx}\left(\sqrt{\frac{u}{v}}\right) = \frac{1}{2\sqrt{\frac{u}{v}}} \cdot \frac{v \cdot u' - u \cdot v'}{v^2} \] Where \( u' = \cos x \) and \( v' = -\cos x \): \[ = \frac{1}{2\sqrt{\frac{1 + \sin x}{1 - \sin x}}} \cdot \frac{(1 - \sin x) \cos x + (1 + \sin x) \cos x}{(1 - \sin x)^2} \] After simplification, we find: \[ f'(x) = \frac{1}{2(1 + \sin x)} \] ### Step 4: Evaluate \( f'\left(\frac{\pi}{6}\right) \) Now we evaluate the derivative at \( x = \frac{\pi}{6} \): \[ f'\left(\frac{\pi}{6}\right) = \frac{1}{2(1 + \frac{1}{2})} = \frac{1}{2 \cdot \frac{3}{2}} = \frac{1}{3} \] ### Step 5: Find the slope of the normal The slope of the normal line is the negative reciprocal of the derivative: \[ \text{slope of normal} = -\frac{1}{f'\left(\frac{\pi}{6}\right)} = -3 \] ### Step 6: Write the equation of the normal line Using the point-slope form of the line: \[ y - \frac{\pi}{3} = -3\left(x - \frac{\pi}{6}\right) \] Simplifying gives: \[ y = -3x + \frac{3\pi}{6} + \frac{\pi}{3} = -3x + \frac{2\pi}{3} \] Rearranging: \[ 3x + y = \frac{2\pi}{3} \] ### Step 7: Check which points lie on the normal line Now we check the given points: 1. For \( (0, 0) \): \[ 3(0) + 0 = 0 \quad \text{(not equal to } \frac{2\pi}{3}\text{)} \] 2. For \( \left(0, \frac{2\pi}{3}\right) \): \[ 3(0) + \frac{2\pi}{3} = \frac{2\pi}{3} \quad \text{(this point lies on the normal)} \] 3. For \( \left(\frac{\pi}{6}, 0\right) \): \[ 3\left(\frac{\pi}{6}\right) + 0 = \frac{\pi}{2} \quad \text{(not equal to } \frac{2\pi}{3}\text{)} \] 4. For \( \left(\frac{\pi}{4}, 0\right) \): \[ 3\left(\frac{\pi}{4}\right) + 0 = \frac{3\pi}{4} \quad \text{(not equal to } \frac{2\pi}{3}\text{)} \] ### Conclusion The only point that lies on the normal line is \( (0, \frac{2\pi}{3}) \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise ILLUSTRATION|62 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES|15 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE TYPE|19 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

If f(x)=sqrt("cosec"^2x-2sinx cosx - 1/(tan^2x)) x in ((7pi)/4,2pi) , then f '((11pi)/6)=

Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,pi)dot

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0