Home
Class 12
MATHS
If a1x+b1y+c1z=0, a2x+b2y+c2z=0, a3x+b3...

If `a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0` and `|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0` , then the given system has, 1) more than two solutions 2) one trivial and one non trivial solutions 3) no solution 4) only trivial solution (0, 0, 0)

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • SCALAR TRIPLE PRODUCT

    RD SHARMA ENGLISH|Exercise All Questions|76 Videos
  • STATISTICS

    RD SHARMA ENGLISH|Exercise All Questions|3 Videos

Similar Questions

Explore conceptually related problems

|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 then the system of equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 has

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

If Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution if /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. . 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has unique solution if (A) a=2,b=2 (B) a!=2,b=3 (C) a!=2, b!=3 (D) a=2,b!=3

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution if /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. x+y+z=6, x+2y+3z=14, 2x+5y+lamda=mu The given system of equations has no solution if (A) lamda=8, mu=10 (B) lamda!=8, muepsilon R (C) lamda=8, mu!=10 (D) lamda!=8, mu!=10

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution if /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. . x+y+z=6, x+2y+3z=14, 2x+5y+lamda=mu The given system of equations has infinite solution if (A) lamda=8, mu=36 (B) lamda!=8, muepsilon R (C) lamda=8, mu!=36 (D) lamda!=8, mu!=36

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

Consider a system of linear equation in three variables x,y,z a_1x+b_1y+ c_1z = d_1 , a_2x+ b_2y+c_2z=d_2 , a_3x + b_3y + c_3z=d_3 The systems can be expressed by matrix equation [(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)][(x),(y),(z)]=[(d_1),(d_2),(d_3)] if A is non-singular matrix then the solution of above system can be found by X = A^(-1)B , the solution in this case is unique. if A is a singular matrix i.e. then the system will have no solution (i.e. it is inconsistent) if Where Adj A is the adjoint of the matrix A, which is obtained by taking transpose of the matrix obtained by replacing each element of matrix A with corresponding cofactors. Now consider the following matrix. A=[(a,1,0),(1,b,d),(1,b,c)], B=[(a,1,1),(0,d,c),(f,g,h)], U=[(f),(g),(h)], V=[(a^2),(0),(0)], X=[(x),(y),(z)] The system AX=U has infinitely many solutions if :

If the lines a_1x+b_1y+1=0,a_2x+b_2y+1=0 and a_3x+b_3y+1=0 are concurrent, show that the point (a_1, b_1),(a_1, b_2) and (a_3, b_3) are collinear.

If u=a_1x+b_1y+c_1=0,v=a_2x+b_2y+c_2=0, and (a_1)/(a_2)=(b_1)/(b_2)=(c_1)/(c_2), then the curve u+k v=0 is (a)the same straight line u (b)different straight line (c)not a straight line (d)none of these

RD SHARMA ENGLISH-SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS-All Questions
  1. Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-...

    Text Solution

    |

  2. A mixture is to be made of three foods A ,\ B ,\ C . The three foods...

    Text Solution

    |

  3. If a1x+b1y+c1z=0, a2x+b2y+c2z=0, a3x+b3y+c3z=0 and |(a1,b1,c1),(a2,b...

    Text Solution

    |

  4. Solve the following system of homogeneous equations: x+y-z=0 x-2y+z=...

    Text Solution

    |

  5. If A=[1-1 1 2 1-3 1 1 1], find A^(-1) and hence solve the system of li...

    Text Solution

    |

  6. Show that the following system of equation is consistent. 2x-y+3z=5,3x...

    Text Solution

    |

  7. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |

  8. The number of solutions of the system of equations: 2x+y-z=7 x-3y+2z=...

    Text Solution

    |

  9. An amount of Rs 5000 is put into three investments at the rate of inte...

    Text Solution

    |

  10. The sum of three numbers is 6. If we multiply the third number 2 and ...

    Text Solution

    |

  11. Find A^(-1), where A=[1 2-3 2 3 2 3-3-4] . Hence solve the system of e...

    Text Solution

    |

  12. Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1]...

    Text Solution

    |

  13. Express the following system of simultaneous linear equation as a m...

    Text Solution

    |

  14. Use matrix method to solve the equations 5x - 7y = 2 and 7x - 5y = 3

    Text Solution

    |

  15. Use matrix method to solve the following system of equations: x-2y-...

    Text Solution

    |

  16. Solve the following system of equations, using matrix method. x+2y+z=7...

    Text Solution

    |

  17. Use matrix method to examine the following system of equations for con...

    Text Solution

    |

  18. Show that the following system of equation is inconsistent. 2x-y+3z=5,...

    Text Solution

    |

  19. If A=[[1,-1, 1],[ 2, 1,-3],[ 1,1,1]] find A^(-1) and hence solve the s...

    Text Solution

    |

  20. Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1...

    Text Solution

    |