Home
Class 12
MATHS
Prove that the product of matrices [co...

Prove that the product of matrices `[cos^2thetacosthetasinthetacosthetasinthetasin^2theta]` and `[cos^2varphicosvarphisinvarphicosvarphisinvarphisin^2varphi]` is the null matrix, when `theta` and `varphi` differ by an odd multiple of `pi/2` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA ENGLISH|Exercise All Questions|181 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA ENGLISH|Exercise All Questions|325 Videos

Similar Questions

Explore conceptually related problems

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

Prove that (cos theta-sintheta)/(cos theta+sintheta)=sec 2 theta-tan 2theta .

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta

RD SHARMA ENGLISH-ALGEBRA OF MATRICES-All Questions
  1. Use matrix multiplication to divide Rs. 30,000 in two parts such that ...

    Text Solution

    |

  2. Three schools A ,\ B and C organised a mela for collecting funds fo...

    Text Solution

    |

  3. Prove that the product of matrices [cos^2thetacosthetasinthetacosthe...

    Text Solution

    |

  4. Let A=[(0,-tan(alpha/2)),(tan(alpha/2),0)] and I be the identity matr...

    Text Solution

    |

  5. Let F(x)=[cosx -sinx 0 sinx cosx 0 ...

    Text Solution

    |

  6. Let A=[2 3-1 2] and f(x)=x^2-4x+7 . Show that f(A)=O . Use this result...

    Text Solution

    |

  7. If A=[0 1 0 0] , prove that (a I+b A)^n=a^n\ I+n a^(n-1)\ b A where I ...

    Text Solution

    |

  8. Let A ,\ B be two matrices such that they commute. Show that for an...

    Text Solution

    |

  9. Let A ,\ B be two matrices such that they commute. Show that for an...

    Text Solution

    |

  10. If A is a square matrix such that A^2=A , show that (I+A)^3=7A+I .

    Text Solution

    |

  11. If A is a square matrix such that A^2=I , then find the simplified...

    Text Solution

    |

  12. If A=[3\ \ \ 5] , B=[7\ \ \ 3] , then find a non-zero matrix C such...

    Text Solution

    |

  13. Compute the indicated products: [a b-b a][a-bb a] (ii) [1-2 2 3][1 ...

    Text Solution

    |

  14. Show that A B!=B A in the following case: A=[5-1 6 7] and B=[2 1 3 ...

    Text Solution

    |

  15. Compute the products A B and B A whichever exists in each of the fol...

    Text Solution

    |

  16. Compute the products A B and B A whichever exists in each of the fol...

    Text Solution

    |

  17. Show that A B!=B A in each of the following cases: A=[[1, 3,-1],[2,-...

    Text Solution

    |

  18. Evaluate the following: ([(1,3),( -1,-4))]+[(3 ,-2 ),(-1 ,1)])[(1 ,3,5...

    Text Solution

    |

  19. If A=[[1, 0],[ 0, 1]] , B=[[1,0],[0,-1]] and C=[[0, 1],[ 1, 0]] , then...

    Text Solution

    |

  20. If A=[[2,-1],[ 3, 2]] and B=[[0, 4],[-1, 7]] , find 3A^2-2B+I .

    Text Solution

    |