Home
Class 12
MATHS
Compute the elements a(43) and a(22) of ...

Compute the elements `a_(43)` and `a_(22)` of the matrix: `A=[[0, 1, 0],[ 2, 0 ,2],[ 4, 0,4]]\ \ [[2,-1],[-3, 2],[ 4 ,3]]\ \ [[0, 1,-1\ \ \ \ \ 2,-2],[ 3,-3, 4\ \ \ \ \ -4, 0]]`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA ENGLISH|Exercise All Questions|181 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA ENGLISH|Exercise All Questions|325 Videos

Similar Questions

Explore conceptually related problems

Find the rank of the matrix A = [[0,1,2,-2],[4,0,2,6],[2,1,3,1]]

" 3.Find the rank of the matrix "[[0,-1,2],[4,3,1],[4,2,3]]

Find the Rank of the matrix A = [[1,4,5,2],[2,1,3,0],[-1,3,2,2]]

4.Find the rank of the matrix A = [[4,2,-1,2],[1,-1,2,1],[2,2,-2,0]]

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Evaluate : [[1,3,5]][[1,0,3],[2,0,1],[0,1,2]][[1],[4],[6]]

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

4) find the rank of [[1,-3,1,2],[0,1,2,3],[3,4,1,-2]]

RD SHARMA ENGLISH-ALGEBRA OF MATRICES-All Questions
  1. For the following matrices verify the distributivity of matrix multi...

    Text Solution

    |

  2. If A=[1 0-2 3-1 0-2 1 1] , B=[0 5-4-2 1 3-1 0 2] and C=[1 5 2-1 1 0 0-...

    Text Solution

    |

  3. Compute the elements a(43) and a(22) of the matrix: A=[[0, 1, 0],[ 2, ...

    Text Solution

    |

  4. If A =[{:(0,1,0),(0,0,1),(p,q,r):}], show that ltbargt A^(3)= pI+qA+rA...

    Text Solution

    |

  5. If omega is a complex cube root of unity, show that ([[1,omega,omega...

    Text Solution

    |

  6. If A=[[1,-2,3],[0, 2 ,-1],[ -4,5-,2]] , find A (adj A) .

    Text Solution

    |

  7. If A=[[4,-1,-4],[ 3, 0,-4],[ 3,-1,-3]] , show that A^2=I3dot

    Text Solution

    |

  8. If [1\ \ 1\ \ x][[1, 0, 2],[ 0 ,2, 1],[ 2, 1, 0]][[1],[ 1],[ 1]]=0 , f...

    Text Solution

    |

  9. If [2 3 5 7][1-3-2 4]=[-4 6-9x] , find xdot

    Text Solution

    |

  10. If [x\ \ 4\ \ 1][[2, 1 ,2],[ 1, 0 ,2],[ 0 ,2,-4]][[x],[4],[-1]]=0 , fi...

    Text Solution

    |

  11. If [1\ -1\ \ x][[0, 1,-1 ],[2 ,1 ,3],[ 1, 1, 1]][[0 ],[1],[ 1]]=0 , fi...

    Text Solution

    |

  12. If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2...

    Text Solution

    |

  13. If A=[[3 ,1],[-1 ,2]] and I=[[1, 0],[ 0, 1]] , then find lambda so tha...

    Text Solution

    |

  14. If A=[[3 ,1],[-1, 2]] , show that A^2-5A+7I^2=O .

    Text Solution

    |

  15. If A=[(2, 3),(-1 ,0)] , show that A^2-2A+3I^2=O .

    Text Solution

    |

  16. Show that the matrix A=[(2, 3), (1, 2)] satisfies the equation A^3-4A...

    Text Solution

    |

  17. Show that the matrix A=[(5, 3), (12 ,7)] then show A^2-12 A-I=O .

    Text Solution

    |

  18. If A=[(3,-5),(-4, 2)] , find A^2-5A-14 Idot

    Text Solution

    |

  19. If A=[[3, 1],[-1 ,2]] , show that A^2-5A+7I=O . Use this to find A^4

    Text Solution

    |

  20. If A=[(3,-2) ,(4,-2)] , find k such that A^2-k A-2I^2=O .

    Text Solution

    |