Home
Class 12
MATHS
If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] ...

If `A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)]` , then verify that `A^2+A=A(A+I)` , where `I` is the identity matrix.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA ENGLISH|Exercise All Questions|181 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA ENGLISH|Exercise All Questions|325 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A =[{:(3,-3,4),(2,-3,4),(0,-1,1):}] and B is the adjoint of A, find the value of |AB+2I| ,where l is the identity matrix of order 3.

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A is a square matrix such that A^2=A , then write the value of 7A-(I+A)^3, where I is the identity matrix.

If A is a square matrix such that A^2=A , then write the value of 7A-(I+A)^3, where I is the identity matrix.

If A is a square matrix such that A^2=A , then write the value of 7A-(I+A)^3, where I is the identity matrix.

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

RD SHARMA ENGLISH-ALGEBRA OF MATRICES-All Questions
  1. If A=[[0 ,0], [4 ,0]] , find A^(16) .

    Text Solution

    |

  2. Four uniform spheres, with masses mA=40 kg, mB=35 kg , mC=200 kg , an...

    Text Solution

    |

  3. If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I...

    Text Solution

    |

  4. If A=[(3,-5),(-4, 2)] , then find A^2-5A-14 I . .

    Text Solution

    |

  5. If P(x)=[cosxsinx-sinxcosx] , then show that P(x)P(y)=P(x+y) .

    Text Solution

    |

  6. If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)...

    Text Solution

    |

  7. If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence fi...

    Text Solution

    |

  8. If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive int...

    Text Solution

    |

  9. If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] ...

    Text Solution

    |

  10. If A=[costhetaisinthetaisinthetacostheta] , then prove by principle...

    Text Solution

    |

  11. If A=[cosalpha+sinalpha,sqrt(2)sinalpha; -sqrt(2)sinalpha,cosalpha-sin...

    Text Solution

    |

  12. If A=[1 1 1 0 1 1 0 0 1] , then use the principle of mathematical in...

    Text Solution

    |

  13. If B ,\ C are n rowed square matrices and if A=B+C , B C=C B , C^2=...

    Text Solution

    |

  14. If A=d i ag\ (a\ \ b\ \ c) , show that A^n=d i ag\ (a^n\ \ b^n\ \ c^n)...

    Text Solution

    |

  15. If A is a square matrix, using mathematical induction prove that (A...

    Text Solution

    |

  16. A matrix X has a+b rows and a+2 columns while the matrix Y has b+1 ...

    Text Solution

    |

  17. Give examples of matrices A and B such that A B!=B A . (ii) A and B...

    Text Solution

    |

  18. Give examples of matrices A and B such that A B=O but B A!=O . (ii)...

    Text Solution

    |

  19. Let A and B be square matrices of the same order. Does (A+B)^2=A^2+...

    Text Solution

    |

  20. If A and B are square matrices of the same order, explain, why in g...

    Text Solution

    |