Home
Class 12
MATHS
For the matrices A and B , A=[[2 ,1 ,3 ]...

For the matrices `A` and `B` , `A=[[2 ,1 ,3 ] , [4 ,1 ,0 ]]` , `B=[[1 , -1] , [ 0, 2 ] , [ 5 , 0]]` verify that `(A B)^T=B^T\ A^T`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA ENGLISH|Exercise All Questions|181 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA ENGLISH|Exercise All Questions|325 Videos

Similar Questions

Explore conceptually related problems

If A=[[2,1,3],[4,1,0]], B=[[1,-1],[0,2],[5,0]] , verify that (AB)\'=B\'A\'

If A=[[3] , [ 5] , [2] ] and B=[1\ \ 0\ \ 4] , verify that (A B)^T=B^T\ A^Tdot

If A=[ -1 // 2 // 3 ] and B=[-2\ \ -1\ \ -4] , verify that (A B)^T=B^T\ A^T

If A=[[2 , 4 ,-1] , [-1 , 0 , 2]] , B=[[3 , 4], [-1 ,2] , [ 2 ,1]] , find (A B)^T .

For two matrices A and B , verify that (A B)^T=B^T\ A^T , where A=[[1 ,3 ] , [2 ,4]] , B=[[1 , 4 ] , [ 2 ,5] ]

If A=[[10,3],[1,2]] and B=[[1,0],[1,-1]] , verify that (AB)\'=B\'A\'

Given the matrices A=[2 1 1 3-1 0 0 2 4] , B=[9 7-1 3 5 4 2 1 6] and C=[2-4 3 1-1 0 9 4 5] Verify that (A+B)+C=A+(B+C) .

If A^T=[[3, 4],[-1, 2], [0 ,1]] and B=[[-1, 2, 1],[ 1, 2, 3]], find A^T-B^T

If A=[[1,4],[0,5],[6,7]] and B=[[2,3,-1],[1,0,-7]] , verify that (AB)\'=B\'A\'

If A=[[3,4],[ -1,2],[0, 1]] and B=[[-1, 2, 1],[1,2, 3]] , then verify that (A+B)^(prime)=A^(prime)+B^(prime)

RD SHARMA ENGLISH-ALGEBRA OF MATRICES-All Questions
  1. If A=[[-2],[4], [5]], B=[[1 ,3,-6]], verify that (A B)' = B'A'.

    Text Solution

    |

  2. If A=[[2 , 4 ,-1] , [-1 , 0 , 2]] , B=[[3 , 4], [-1 ,2] , [ 2 ,1]] , ...

    Text Solution

    |

  3. For the matrices A and B , A=[[2 ,1 ,3 ] , [4 ,1 ,0 ]] , B=[[1 , -1] ,...

    Text Solution

    |

  4. For two matrices A and B , verify that (A B)^T=B^T\ A^T , where A=[[1 ...

    Text Solution

    |

  5. If A^T=[3 4-1 2 0 1] and B=[-1 2 1 1 2 3] , find A^T-B^T .

    Text Solution

    |

  6. If A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that A^T...

    Text Solution

    |

  7. If A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]], verify that A^T A=I2

    Text Solution

    |

  8. Let li,mi,ni; i=1,2,3 be the direction cosines of three mutually perpe...

    Text Solution

    |

  9. Show that the elements on the main diagonal of a skew-symmetric mat...

    Text Solution

    |

  10. If the matrix A=[[0,a,-3],[2,0,-1],[b,1,0]] is skew-symmetric, find ...

    Text Solution

    |

  11. Let A be a square matrix. Then prove that (i) A + A^T is a symmetric m...

    Text Solution

    |

  12. Prove that every square matrix can be uniquely expressed as the sum of...

    Text Solution

    |

  13. If A and B are symmetric matrices, then show that A B is symmetric i...

    Text Solution

    |

  14. Show that the matrix B^T\ A B is symmetric or skew-symmetric accord...

    Text Solution

    |

  15. Let A and B be symmetric matrices of same order. Then AB-BA is a skew ...

    Text Solution

    |

  16. Express the matrix A=|(3, 2 ,3),(4,5 ,3),( 2, 4,5)| as the sum of a ...

    Text Solution

    |

  17. Show that all positive integral powers of a symmetric matrix are sy...

    Text Solution

    |

  18. Show that positive odd integral powers of a skew-symmetric matrix are ...

    Text Solution

    |

  19. A matrix which is both symmetric as well as skew-symmetric is a nul...

    Text Solution

    |

  20. If A=[[2, 3], [4, 5]] , prove that A-A^T is a skew-symmetric matrix.

    Text Solution

    |