Home
Class 12
MATHS
If [[1 ,0],[y,5]]+2[[x,0], [1,-2]]=I , w...

If `[[1 ,0],[y,5]]+2[[x,0], [1,-2]]=I` , where `I` is `2xx2` unit matrix. Find `x` and `y` .

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • ADJOINTS AND INVERSE OF MATRIX

    RD SHARMA ENGLISH|Exercise All Questions|181 Videos
  • ALGEBRA OF VECTORS

    RD SHARMA ENGLISH|Exercise All Questions|325 Videos

Similar Questions

Explore conceptually related problems

If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I , where I is a 2 xx 2 unit matrix.

Given A=[(x, 3),(y, 3)] If A^(2)=3I , where I is the identity matrix of order 2, find x and y.

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A=[{:(,0,2),(,5,-2):}], B=[{:(,1,-1),(,3,2):}] and is a unit matrix of order 2 xx 2 find : (i) AB (ii) BA (iii) AI (Iv) A^2 (v) B^2A

If 2X+3Y=[[2,3],[4,0]] and 3X+2Y=[[-2, 2],[1,-5]] find X + Y.

Find x and y, if 2[[1, 3],[ 0,x]]+[[y,0], [1, 2]]=[[5, 6],[ 1, 8]]

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (ii) Find the matrix M.

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (i) State the order of matrix M.

Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I is the (2xx2 identity matrix). Then the product of all elements of matrix V is

RD SHARMA ENGLISH-ALGEBRA OF MATRICES-All Questions
  1. If A=[[cosx,sinx],[-sinx,cosx]] , when A + A^T= I find x satisfying 0 ...

    Text Solution

    |

  2. If A=[[cosx,-sinx],[sinx,cosx]] , find A A^T

    Text Solution

    |

  3. If [[1 ,0],[y,5]]+2[[x,0], [1,-2]]=I , where I is 2xx2 unit matrix. Fi...

    Text Solution

    |

  4. If matrix A=[[1,-1],[-1 ,1]] and A^2=k A , then write the value of k

    Text Solution

    |

  5. If A=[[1, 1], [1, 1]] satisfies A^4=lambdaA , then write the value of ...

    Text Solution

    |

  6. If A=[[-1, 0 ,0], [0,-1, 0], [0, 0,-1]] , find A^2 .

    Text Solution

    |

  7. If A=[[-1, 0, 0], [0,-1, 0], [0, 0,-1]] , find A^3 .

    Text Solution

    |

  8. If A=[[-3, 0], [0,-3]] , find A^4 .

    Text Solution

    |

  9. If [[x,2]][[3],[ 4]]=2, find x

    Text Solution

    |

  10. If A=[a(i j)] is a 2xx2 matrix such that a(i j)=i+2j , write A .

    Text Solution

    |

  11. Find a matrix A ,ifA+[[2, 3],[-1, 4]]=[[3,-6],[-3, 8]]

    Text Solution

    |

  12. If A=[a(i j)] is a square matrix such that a(i j)=i^2-j^2 , then wr...

    Text Solution

    |

  13. For any square matrix write whether AA^T is symmetric or skew-symm...

    Text Solution

    |

  14. If A=[a(i j)] is a skew-symmetric matrix, then write the value of s...

    Text Solution

    |

  15. If A=[a(i j)] is a skew-symmetric matrix, then write the value of s...

    Text Solution

    |

  16. If A and B are symmetric matrices, then write the condition for whi...

    Text Solution

    |

  17. If B is a skew-symmetric matrix, write whether the matrix A B\ A^T ...

    Text Solution

    |

  18. If B is a symmetric matrix, write whether the matrix A B\ A^T is sy...

    Text Solution

    |

  19. If A is a skew-symmetric and n in N such that (A^n)^T=lambda\ A^n ...

    Text Solution

    |

  20. If A is a symmetric matrix and n in N , write whether A^n is symme...

    Text Solution

    |