Home
Class 12
MATHS
If log (x^2+y^2)=2t a n^(-1)\ (y/x), the...

If log `(x^2+y^2)=2t a n^(-1)\ (y/x),` then show that `(dy)/(dx)=(x+y)/(x-y)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y) .

"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

dy/dx=(x-y+1)/(2x-2y+3)

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .