Home
Class 12
MATHS
If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2)...

If `x^2+y^2=t-1/t` and `x^4+y^4=t^2+1/(t^2)` , then prove that `(dy)/(dx)=1/(x^3y)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

if x^2+y^2 = t - 1/t and x^4 + y^4 = t^2 + 1/t^2 then prove that dy/dx = x^3y

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If x^2+y^2=(t+1/t) and x^4+y^4=t^2+1/t^2 , then x^3y(dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t_(2)), then ((dy)/(dx))_((1.1)) is…………

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=t^2,\ \ y=t^3 , then (dy)/(dx)

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)