Home
Class 12
MATHS
If cosy=xcos(a+y) , with cosa!=+-1 , pro...

If `cosy=xcos(a+y)` , with `cosa!=+-1` , prove that `(dy)/(dx)=(cos^2(a+y))/(sina)` .

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ \cos y = x \cos(a + y) \] We need to find \(\frac{dy}{dx}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

If cosy=xcos(a+y) , where cosa!=-1 , prove that (dy)/(dx)=(cos^2(a+y))/(sina)

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If x y=1 , prove that (dy)/(dx)+y^2=0 .

If x sin(a+y)+sina.cos(a+y)=0 , then prove that (dy)/(dx) = (sin^(2)(a+y))/(sina)

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy))

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

If y=xsiny , prove that (dy)/(dx)=y/(x(1-xcosy)