Home
Class 12
MATHS
If x^y=e^(x-y) , prove that (dy)/(dx)=(l...

If `x^y=e^(x-y)` , prove that `(dy)/(dx)=(logx)/((1+logx)^2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If y=sin(x^x) , prove that (dy)/(dx)=cos(x^x) .x^x(1+logx)

If x^x+y^x=1 , prove that (dy)/(dx)=-{(x^x(1+logx)+y^x. logy)/(x . y^((x-1)))}

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

x(dy)/(dx)=y(logy-logx+1)