Home
Class 12
MATHS
If e^x+e^y=e^(x+y) , prove that (dy)/(dx...

If `e^x+e^y=e^(x+y)` , prove that `(dy)/(dx)+e^(y-x)=0`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    RD SHARMA ENGLISH|Exercise All Questions|107 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    RD SHARMA ENGLISH|Exercise All Questions|90 Videos

Similar Questions

Explore conceptually related problems

If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If e^(x+y)-x=0 , prove that (dy)/(dx)=(1-x)/x

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

Solve : (dy)/(dx)=e^(x+y)